79171

Междисциплинарные аспекты развития технознания. Роль техники в формализации и математизации научного знания, гуманитарные приложения технических наук

Доклад

Логика и философия

Роль техники в формализации и математизации научного знания гуманитарные приложения технических наук Технознание целостная система знаний о технике технологии и техносфере. В связи с возрастанием сложности проектируемых технических систем появлением новых прикладных дисциплин выработкой системных принципов исследования особое значение приобретает деятельность направленная на организацию и руководство такими видами деятельности как с одной стороны проектирование компонентов конструирование отладка разработка технологии а с другой...

Русский

2015-02-10

35.5 KB

12 чел.

Междисциплинарные аспекты развития технознания. Роль техники в формализации и математизации научного знания, гуманитарные приложения технических наук

(Технознание – целостная система знаний о технике, технологии и техносфере).

Технические науки, которые формировались прежде всего в качестве приложения различных областей естествознания к определенным классам инженерных задач, в середине ХХ века образовали особый класс научных дисциплин, отличающихся от естественных наук как по объекту, так и по внутренней структуре, но также обладающих дисциплинарной организацией. Появились узкие специалисты, которые знают "все ни о чем" и так называемые универсалисты, напротив, знают "ничего обо всем". Сами инженерные задачи становятся комплексными, и при их решении необходимо учитывать самые различные аспекты, которые раньше казались второстепенными, например, экологические и социальные аспекты.

В связи с возрастанием сложности проектируемых технических систем, появлением новых прикладных дисциплин, выработкой системных принципов исследования особое значение приобретает деятельность, направленная на организацию и руководство такими видами деятельности как, с одной стороны, проектирование компонентов, конструирование, отладка, разработка технологии, а с другой - радиоэлектроника, химическая технология, инженерная экономика, разработка средств общения человека и машины и т.п., а также направленная на стыковку и интеграцию частей проектируемой системы в единое целое.

Можно выделить три основных направления в современной инженерной деятельности:

1) инженеры-производственники, выполняющие функции технолога, организатора производства и инженера по эксплуатации;

2) инженеры-исследователи-разработчики, тесно связанные с научно-исследовательской работой в области технической науки;

3) инженеры-системотехники, задача которых - организация и управление сложной инженерной деятельностью, комплексное исследование и системное проектирование. Подготовка такого инженера-организатора и универсалиста требует самой широкой системной и методологической направленности и междисциплинарности. Для такого рода инженеров особенно важно междисциплинарное и общегуманитарное образование, в котором ведущую роль могла бы сыграть философия науки и техники.

Появление множества научных и технических дисциплин стало результатом специализация и профессионализация науки и техники с одновременной технизацией науки и сциентификацией (абсолютизация роли науки). Этот процесс также тесно связан со становлением и развитием специально-научного и основанного на науке инженерного образования.

Инженерная деятельность предполагает регулярное применение научных знаний для создания искусственных, технических систем, сооружений, устройств и т.п.

Научное знание позволяет инженеру:

1) предвидеть наступление соответствующих событий, совершаемых в природе или обществе и тем самым предсказать ход их дальнейшего развития и

2) изменить эту объективную действительность посредством человеческой деятельности в соответствии с полученными научными знаниями и тем самым подчинить эту действительность человеку и обществу в целом.

Таким образом, процесс развития техники является стимулирующим фактором в процессе развития научного знания. Для проведения логических исследований собранных фактов при обосновании научного знания используются такие методы, как математизация и формализация.

Математизация – создание математической модели – абстрактной системы, состоящей из набора математических объектов (преобразование Якобиана). Выделяют два типа математических моделей:

- модели описания: не предполагают каких бы то ни было содержательных утверждений о сущности изучаемого круга явлений. Соответствие между формальной и физической структурой не обусловлено какой либо закономерностью, носит характер единичного факта;

- модели объяснения: структура объекта находит себе соответствие в математическом образе, она обладает способностью объяснения.

Формализация представляет собой совокупность познавательных операций, обеспечивающих отвлечение от значения понятий теории с целью исследования ее логических особенностей. Одним из способов формализации является аксиоматический метод, суть которого метода сводится к выделению неких исходных понятий теории, определения которых являются аксиомами и логических средств, которые используются в процессе развертывания теории.

Обычные содержательно-интуитивные рассуждения заменены в формализованной теории выводом (из некоторых выражений, принятых за исходные) по явно установленным и четко фиксированным правилам. Для их осуществления нет необходимости принимать во внимание, значение или смысл выражений теории. Формализованная теория может рассматриваться как система материальных объектов определенного рода (символов), с которыми можно обращаться, как с конкретными физическими объектами.

Формализация позволяет производить операции со знаками и символами вместо операций с мыслями о предметах.

Современный этап развития инженерной деятельности характеризуется системным подходом к решению сложных научно-технических задач, обращением ко всему комплексу социальных гуманитарных, естественных и технических дисциплин. В жизни современного общества инженерная деятельность играет все возрастающую роль. Проблемы практического использования научных знаний, повышения эффективности научных исследований и разработок выдвигают сегодня инженерную деятельность на передний край всей экономики и современной культуры. В настоящее время великое множество технических вузов готовит целую армию инженеров различного профиля для самых разных областей народного хозяйства. Общество с развитой рыночной экономикой требует от инженера большей ориентации на вопросы маркетинга и сбыта, учета социально-экономических факторов и психологии потребителя, а не только технических и конструктивных параметров будущего изделия.


 

А также другие работы, которые могут Вас заинтересовать

18415. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И СИСТЕМЫ В ЛОГИСТИКЕ 804 KB
  Лекция 10 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И СИСТЕМЫ В ЛОГИСТИКЕ Цель раздела: изучение теоретических и методических аспектов информационного обеспечения логистического процесса знакомство с практикой и методами организации и управления информационными потоками в логист...
18416. Основные понятия и определения: система управления, объекты управления и их характеристика 91 KB
  Лекция 1. Введение. Основные понятия и определения: система управления объекты управления и их характеристика. До сего времени в повседневной жизни и в тех дисциплинах которые вы уже прослушали мы постоянно употребляли такие слова как система управление
18417. Общие сведения о технических средствах автоматизации 107 KB
  Лекция 2. Общие сведения о технических средствах автоматизации. Необходимость изучения общих вопросов касающихся технических средств автоматизации и государственной системы промышленных приборов и средств автоматизации ГСП диктуется тем что технические средств
18418. Модели и процессы принятия решений. Функции и критерии управления. Системный подход к управлению 80 KB
  Лекция 3. Модели и процессы принятия решений. Функции и критерии управления. Системный подход к управлению. Системный подход к задачам управления Существенное изменение масштабов производственных задач на современном предприятии требует использования эффективных ...
18419. Автоматизированные системы управления производством, технологическими процессами. Общая характеристика систем 48 KB
  Лекция 4. Автоматизированные системы управления производством технологическими процессами. Общая характеристика систем. Принципы создания и функционирования автоматизированных систем. Автоматизированные системы управления. Как мы уже знаем под автоматизацией
18420. Организационная и функциональная структура АСУ. Методика формализации систем 61.5 KB
  Лекция 5. Организационная и функциональная структура АСУ. Методика формализации систем. Структура АСУ и ее анализ. Организация протекающих внутри системы информационных и управляющих процессов основана на принятой для этого внутренней структуре. При изучении хара
18421. Последовательность разработки автоматизированных систем 48.5 KB
  Лекция 6. Последовательность разработки автоматизированных систем. Разработка автоматизированных систем включает в себя проектирование внедрение опытную эксплуатацию и нормальную работу АСУ. Большой объем и известная сложность разработки и внедрения АСУ опр
18422. Технология проектирования автоматизированных систем 76 KB
  Лекция 7. Технология проектирования автоматизированных систем. Предпроектной стадия создания АСУ. Предпроектной стадии предшествует ознакомление организацииразработчика с объектом автоматизации и создание организационных предпосылок для начала работ по создан...
18423. Техническое обеспечение автоматизированных систем. Государственная система приборов и средств автоматизации (ГСП). Состав и структура ГСП, характеристика элементов ГСП 185.5 KB
  Лекция 8. Техническое обеспечение автоматизированных систем. Государственная система приборов и средств автоматизации ГСП. Состав и структура ГСП характеристика элементов ГСП. Техническое обеспечение автоматизированных систем. Техническое обеспечение АСУ опре...