79171

Междисциплинарные аспекты развития технознания. Роль техники в формализации и математизации научного знания, гуманитарные приложения технических наук

Доклад

Логика и философия

Роль техники в формализации и математизации научного знания гуманитарные приложения технических наук Технознание целостная система знаний о технике технологии и техносфере. В связи с возрастанием сложности проектируемых технических систем появлением новых прикладных дисциплин выработкой системных принципов исследования особое значение приобретает деятельность направленная на организацию и руководство такими видами деятельности как с одной стороны проектирование компонентов конструирование отладка разработка технологии а с другой...

Русский

2015-02-10

35.5 KB

11 чел.

Междисциплинарные аспекты развития технознания. Роль техники в формализации и математизации научного знания, гуманитарные приложения технических наук

(Технознание – целостная система знаний о технике, технологии и техносфере).

Технические науки, которые формировались прежде всего в качестве приложения различных областей естествознания к определенным классам инженерных задач, в середине ХХ века образовали особый класс научных дисциплин, отличающихся от естественных наук как по объекту, так и по внутренней структуре, но также обладающих дисциплинарной организацией. Появились узкие специалисты, которые знают "все ни о чем" и так называемые универсалисты, напротив, знают "ничего обо всем". Сами инженерные задачи становятся комплексными, и при их решении необходимо учитывать самые различные аспекты, которые раньше казались второстепенными, например, экологические и социальные аспекты.

В связи с возрастанием сложности проектируемых технических систем, появлением новых прикладных дисциплин, выработкой системных принципов исследования особое значение приобретает деятельность, направленная на организацию и руководство такими видами деятельности как, с одной стороны, проектирование компонентов, конструирование, отладка, разработка технологии, а с другой - радиоэлектроника, химическая технология, инженерная экономика, разработка средств общения человека и машины и т.п., а также направленная на стыковку и интеграцию частей проектируемой системы в единое целое.

Можно выделить три основных направления в современной инженерной деятельности:

1) инженеры-производственники, выполняющие функции технолога, организатора производства и инженера по эксплуатации;

2) инженеры-исследователи-разработчики, тесно связанные с научно-исследовательской работой в области технической науки;

3) инженеры-системотехники, задача которых - организация и управление сложной инженерной деятельностью, комплексное исследование и системное проектирование. Подготовка такого инженера-организатора и универсалиста требует самой широкой системной и методологической направленности и междисциплинарности. Для такого рода инженеров особенно важно междисциплинарное и общегуманитарное образование, в котором ведущую роль могла бы сыграть философия науки и техники.

Появление множества научных и технических дисциплин стало результатом специализация и профессионализация науки и техники с одновременной технизацией науки и сциентификацией (абсолютизация роли науки). Этот процесс также тесно связан со становлением и развитием специально-научного и основанного на науке инженерного образования.

Инженерная деятельность предполагает регулярное применение научных знаний для создания искусственных, технических систем, сооружений, устройств и т.п.

Научное знание позволяет инженеру:

1) предвидеть наступление соответствующих событий, совершаемых в природе или обществе и тем самым предсказать ход их дальнейшего развития и

2) изменить эту объективную действительность посредством человеческой деятельности в соответствии с полученными научными знаниями и тем самым подчинить эту действительность человеку и обществу в целом.

Таким образом, процесс развития техники является стимулирующим фактором в процессе развития научного знания. Для проведения логических исследований собранных фактов при обосновании научного знания используются такие методы, как математизация и формализация.

Математизация – создание математической модели – абстрактной системы, состоящей из набора математических объектов (преобразование Якобиана). Выделяют два типа математических моделей:

- модели описания: не предполагают каких бы то ни было содержательных утверждений о сущности изучаемого круга явлений. Соответствие между формальной и физической структурой не обусловлено какой либо закономерностью, носит характер единичного факта;

- модели объяснения: структура объекта находит себе соответствие в математическом образе, она обладает способностью объяснения.

Формализация представляет собой совокупность познавательных операций, обеспечивающих отвлечение от значения понятий теории с целью исследования ее логических особенностей. Одним из способов формализации является аксиоматический метод, суть которого метода сводится к выделению неких исходных понятий теории, определения которых являются аксиомами и логических средств, которые используются в процессе развертывания теории.

Обычные содержательно-интуитивные рассуждения заменены в формализованной теории выводом (из некоторых выражений, принятых за исходные) по явно установленным и четко фиксированным правилам. Для их осуществления нет необходимости принимать во внимание, значение или смысл выражений теории. Формализованная теория может рассматриваться как система материальных объектов определенного рода (символов), с которыми можно обращаться, как с конкретными физическими объектами.

Формализация позволяет производить операции со знаками и символами вместо операций с мыслями о предметах.

Современный этап развития инженерной деятельности характеризуется системным подходом к решению сложных научно-технических задач, обращением ко всему комплексу социальных гуманитарных, естественных и технических дисциплин. В жизни современного общества инженерная деятельность играет все возрастающую роль. Проблемы практического использования научных знаний, повышения эффективности научных исследований и разработок выдвигают сегодня инженерную деятельность на передний край всей экономики и современной культуры. В настоящее время великое множество технических вузов готовит целую армию инженеров различного профиля для самых разных областей народного хозяйства. Общество с развитой рыночной экономикой требует от инженера большей ориентации на вопросы маркетинга и сбыта, учета социально-экономических факторов и психологии потребителя, а не только технических и конструктивных параметров будущего изделия.


 

А также другие работы, которые могут Вас заинтересовать

28538. КРАТКИЕ СВЕДЕНИЯ О КРИПТОАНАЛИЗЕ 39.5 KB
  Нарушителю доступны все зашифрованные тексты. Нарушитель может иметь доступ к некоторым исходным текстам для которых известны соответствующие им зашифрованные тексты. Его применение осложнено тем что в реальных криптосистемах информация перед шифрованием подвергается сжатию превращая исходный текст в случайную последовательность символов или в случае гаммирования используются псевдослучайные последовательности большой длины. Дифференциальный или разностный криптоанализ основан на анализе зависимости изменения шифрованного текста...
28539. Получение случайных чисел 45 KB
  Последовательности случайных чисел найденные алгоритмически на самом деле не являются случайными т. Однако при решении практических задач программно получаемую последовательность часто все же можно рассматривать как случайную при условии что объем выборки случайных чисел не слишком велик. В связи с этим для случайных чисел найденных программным путем часто применяют название псевдослучайные числа.
28540. Теоретико-информационный подход к оценке криптостойкости шифров 50.63 KB
  Начнем с описания модели вскрытия секретного ключа.Из этой модели в частности следует что сегодня надежными могут считаться симметричные алгоритмы с длиной ключа не менее 80 битов. необходимого для взлома симметричного алгоритма с различной длиной ключа. Тот факт что вычислительная мощность которая может быть привлечена к криптографической атаке за 10 лет выросла в 1000 раз означает необходимость увеличения за тот же промежуток времени минимального размера симметричного ключа и асимметричного ключа соответственно примерно на 10 и 20...
28541. Классификация основных методов криптографического закрытия информации 79.5 KB
  Символы шифруемого текста заменяются другими символами взятыми из одного алфавита одноалфавитная замена или нескольких алфавитов многоалфавитная подстановка. Таблицу замены получают следующим образом: строку Символы шифруемого текста формируют из первой строки матрицы Вижинера а строки из раздела Заменяющие символы образуются из строк матрицы Вижинера первые символы которых совпадают с символами ключевого слова. Очевидно akjk1 если j =k a1j= aknkj1 если j...
28542. Шифрование в каналах связи компьютерной сети 59.5 KB
  Самый большой недостаток канального шифрования заключается в том что данные приходится шифровать при передаче по каждому физическому каналу компьютерной сети. В результате стоимость реализации канального шифрования в больших сетях может оказаться чрезмерно высокой. Кроме того при использовании канального шифрования дополнительно потребуется защищать каждый узел компьютерной сети по которому передаются данные. Если абоненты сети полностью доверяют друг другу и каждый ее узел размещен там где он защищен от злоумышленников на этот недостаток...
28543. Использование нелинейных операций для построения блочных шифров 35.87 KB
  В большинстве блочных алгоритмов симметричного шифрования используются следующие типы операций: Табличная подстановка при которой группа битов отображается в другую группу битов. Эти операции циклически повторяются в алгоритме образуя так называемые раунды. Входом каждого раунда является выход предыдущего раунда и ключ который получен по определенному алгоритму из ключа шифрования K.
28544. МЕТОДЫ ЗАМЕНЫ 152.5 KB
  К достоинствам блочных шифров относят похожесть процедур шифрования и расшифрования, которые, как правило, отличаются лишь порядком действий. Это упрощает создание устройств шифрования, так как позволяет использовать одни и те же блоки в цепях шифрования и дешифрования.
28546. О возможности реализации абсолютной секретности в постановке Шеннона 58.5 KB
  А это в свою очередь может повлиять на выбор противником своих действий и таким образом совершенной секретности не получится. Следовательно приведенное определение неизбежным образом следует из нашего интуитивного представления о совершенной секретности. Для совершенной секретности системы величины PEM и PM должны быть равны для всех E и M.