79394

Модель строения твёрдых тел. Механические свойства твёрдых тел. Упругость, пластичность, хрупкость. Диаграмма растяжения

Конспект урока

Педагогика и дидактика

Причиной этих свойств во многом являются силы связи между молекулами материала. Под твердостью понимают сопротивление материала которое он создает при вдавливании или царапании его поверхности другим телом. Оценка твердости материала проводится с помощью простого испытания на твердость методом царапания.

Русский

2015-02-11

26.38 KB

11 чел.

Урок №2/60

Тема №30: «Модель строения твёрдых тел. Механические свойства твёрдых тел. Упругость, пластичность, хрупкость. Диаграмма растяжения.»

1 Модель строения твёрдых тел


Твердые тела имеют постоянную форму и объем, практически несжимаемы.
Минимальная потенциальная энергия взаимодействия молекул больше кинетической энергии молекул. Сильное взаимодействие частиц. 
Тепловое движение молекул в твердом теле выражается только лишь колебаниями частиц (атомов, молекул) около положения устойчивого равновесия.
Из-за больших сил притяжения молекулы практически не могут менять свое положение в веществе, этим и объясняется неизменность объема и формы твердых тел.
Большинство твердых тел имеет упорядоченное в пространстве расположение частиц (дальний порядок), которые образуют правильную кристаллическую решетку. Частицы вещества (атомы, молекулы, ионы) расположены в вершинах - узлах кристаллической решетки. Узлы кристаллической решетки совпадают с положением устойчивого равновесия частиц. Такие твердые тела называются кристаллическими.

2 Механические свойства твёрдых тел. Упругость, пластичность, хрупкость.

При применении твердых  материалов, а также при их переработке необходимо учитывать их механические свойства. При этом различают твердые и мягкие тела, вязкие и хрупкие, упругие и пластичные. Причиной этих свойств во многом являются силы связи между молекулами материала.

Если материал может сопротивляться проникновению в него других тел, то он тверже, чем другие. Под твердостью понимают сопротивление материала, которое он создает при вдавливании или царапании его поверхности другим телом.

Оценка твердости материала проводится с помощью простого испытания на твердость методом царапания. Более мягкий материал будет царапаться более твердым. При этом различают степени твердости 1—10. Для оценки различным минералам приписываются различные степени твердости.

Твердыми материалами, например, являются алмаз, твердые строительные материалы, например гранит, клинкерные стеновые камни

О мягкости материала говорят, когда его можно сжать с приложением небольшой силы или процарапать другим материалом.

Мягкими материалами являются, например, свинец, гипс и вспененные синтетические материалы

Под вязкостью понимают способность материала под воздействием изгибных, ударных и толчковых нагрузок хотя и поддаваться, но при этом не разрушаться.

Вязкими являются такие материалы, как сталь, свинец, дерево, кожа и термопластичные пластмассы. Они в основном имеют волокнистое строение.

Под хрупкостью понимают свойство материала под воздействием изгибающих, ударных и толчковых нагрузок не изменять свою форму, а сразу разрушаться.

К хрупким материалам относится, например, стекло, природные камни, искусственные стеновые камни и бетон. Строение их в основном зернистое. Хрупкость материалов считается недостатком.

Упругость — это свойство материала позволять себя сжимать или растягивать, а после снятия нагрузки — возвращаться к первоначальной форме.

Упругими материалами являются, например, резина и рессорная сталь.

Пластичностью называют свойство материалов под воздействием нагрузки изменять свою форму и сохранять эту новую форму после снятия нагрузки.

Рис.1

Диаграмма растяжения. Диаграммой растяжения принято называть графическую зависимость σ от ε. По экспериментальным значениям относительного удлинения ε можно вычислить соответствующие им значения нормального напряжения σ, возникающего в упруго деформированном теле. Пример диаграммы растяжения для металлического образца изображен на рис.1. На участке 0–1 график имеет вид прямой, проходящей через начало координат. Это значит, что до определенного значения напряжения деформация является упругой и выполняется закон Гука, согласно которому нормальное напряжение пропорционально относительному удлинению. Максимальное значение нормального напряжения σП, при котором еще выполняется закон Гука, называют пределом пропорциональности.

При дальнейшем увеличении нагрузки зависимость напряжения от относительного удлинения становится нелинейной (участок 1–2), хотя упругие свойства тела еще сохраняются. Максимальное значение σy нормального напряжения, при котором еще не возникает остаточная деформация, называют пределом упругости. (Предел упругости лишь на сотые доли процента превышает предел пропорциональности). Увеличение нагрузки выше предела упругости (участок 2–3) приводит к тому, что деформация становится остаточной.

Затем образец начинает удлиняться практически при постоянном напряжении (участок 3–4 графика). Это явление называют текучестью материала. Нормальное напряжение σТ, при котором остаточная деформация достигает заданного значения, называют пределом текучести.

При напряжениях, превышающих предел текучести, упругие свойства тела в известной мере восстанавливаются, и оно вновь начинает сопротивляться деформации (участок 4–5 графика).

Максимальное значение нормального напряжения σпр, при превышении которого происходит разрыв образца, называют пределом прочности.

Зададимся вопросом, какой физический смысл имеет модуль Юнга? Запишем закон Гука в виде:

.

Если удлинение ΔL будет равно первоначальной длине образца L, то .

Это означает, что модуль Юнга равен тому напряжению, которое вызывает удлинение образца вдвое. Конечно, материалов, которые можно удлинить в два раза, кроме разве резины и некоторых полимеров, нет. Однако как характеристика упругих свойств материала модуль Юнга служит отлично.

Для стали модуль Юнга примерно равен 2,1·1011 Н/м2. Почему примерно? Да потому, что марок сталей очень много. Соответственно и модуль Юнга пружинной стали больше модуля Юнга стали, из которой делаются гвозди.

Свинец – мягкий металл, но и он обладает упругостью, а его модуль Юнга в 15 раз меньше, чем модуль Юнга стали. Все остальные металлы имеют модуль Юнга больше, чем у свинца, но меньше, чем у стали. Другой важной характеристикой конструкционного материала является предел прочности. Предел прочности у разных материалов также сильно отличается. У стали предел прочности наибольший. Поэтому сталь – основной конструкционный материал. При проектировании любых конструкций учитывается предел прочности, и возможные напряжения должны быть в несколько раз (обычно в 10 раз) меньше предела прочности. Существует специальный раздел в прикладной науке – сопротивление материалов. Его изучают во всех технических вузах, готовящих специалистов по конструированию и эксплуатации машин и механизмов.

Интересно отметить, что стальная проволока, повешенная за один конец, растягивается под действием собственного веса. А если такая проволока будет иметь длину L = 4,2 км, то она оборвется под действием собственного веса. Проволока из свинца оборвется под действием собственного веса при длине всего в 120 метров.

Все машины и механические конструкции – башни, мосты, арочные конструкции – рассчитываются так, чтобы напряжения ни в одном месте конструкции не превышали предела упругости. В настоящее время существуют стальные мосты, длина пролета которых (расстояние между опорами) превышает 1 000 метров.


 

А также другие работы, которые могут Вас заинтересовать

34785. Философия древнего Китая. Даосизм и конфуцианство 42.5 KB
  Наоборот основным положением китайской философии является утверждение неразрывной связи человека и божественного Небесного начала. В классический период 6 3 века до н. Во второй период 3 11 века произошел резкий поворот к метафизике. В неоконфуцианский период 11 19 века влияние буддизма и даосизма побудило конфуцианских философов к разработке метафизической базы для своей этики.
34786. Человек в философии и культуре древней индии. Буддизм и йога 31 KB
  Учения об обществе и государстве эстетика являлись особыми теоретическими дисциплинами. Индийскую философию составляют шесть ортодоксальных признающих авторитет вед школ или систем: миманса веданта ньяя вайшешика санкхья и йога; а также неортодоксальные учения адживикизма буддизма и джайнизма. Учение каждой из них было систематизировано сборниками сутр которые кратко излагали доктрины отдельной системы учения в форме лаконичных изречений формул или правил. В основе учения мимансы лежит убеждение в том что освобождение мокша...
34787. Становление древнегреческой философии: от мифа к логосу. Диалектика Гераклита 26.5 KB
  Диалектика Гераклита Возникновение и общие принципы античной философии Античная философия зародилась в IV в. Таким образом для возникновения античной философии было необходимо единство и противоположность умственного и физического труда материи и идеи. Важным элементом философии Античности была взаимосвязь материи и идеи.
34788. Онтология античной классики. Парменид и Зенон 34.5 KB
  Античная философия это последовательно развивавшаяся философская мысль которая охватывает период свыше тысячи лет с конца VII в. Античная философия развивалась неизолированно она черпала мудрость Древнего Востока таких стран как: Ливия; Вавилон; Египет; Персия; Древний Китай; Древняя Индия. Характерные черты античной философии: 1 античная философия синкретична характерным для нее является большая слитность нерасчлененность важнейших проблем чем для более поздних видов философии; 2античная философия космоцентрична она...
34789. Атомистическая трактовка бытия. Левкипп и Демокрит 23.5 KB
  Космос рождается в вихре из столкновения атомов а цилиндрическая Земля находится в центре Вселенной. Признавал наличие двух первоначал: атомов и пустоты. Пустоту представлял как вакуум бесконечное пространство; в пустоте движется бесконечное количество атомов составляющих Бытие то есть физический мир. Таким образом различия между предметами по цвету температуре вкусу и другим чувственно воспринимаемым качествам вызваны лишь комбинациями атомов различной конфигурации.
34790. Софисты: человек – мера всех вещей. Протагор 26.5 KB
  древнегреческий философ основатель школы софистов. Название школы происходит от греческого sophistes мудрый или знающий. Первый и наиболее выдающийся представитель школы Протагор около 485 около 410 до н. Софисты не образуя единой школы в основном исследовали этическую политическую и гносеологическую проблематику.
34791. Платон и его учение об идеях. Теория познания и учение о душе. Теория государства Платона 28.5 KB
  В области моральнопсихологической проблематики основывался на дифференциации трех составляющих души: аффективной волевой и рассудочной вожделение и пыл как два коня души которыми правит возница разум чему соответствуют такие фундаментальные добродетели как воздержанность мужество и мудрость. В процессе развития человека она вспоминает свои знания которые видела раньше При этом чувственноэмпирический опыт является лишь толчком к воспоминанию поэтому Платон советует обращаться к душе минуя по возможности органы...
34792. Метафизика Аристотеля: учение о 4 причинах. Учение о душе. Разум и воля этика Аристотеля 30 KB
  Аристотель 384 322 до н. АРИСТОТЕЛЬ О ПРЕДМЕТЕ И ОСНОВНЫХ ХАРАКТЕРИСТИКАХ НАУЧНОГО ЗНАНИЯ Аристотель 384322 гг. Аристотель является родоначальником собственно научной философии в его учении некоторые науки получили освещение с точки зрения философии. Аристотель детально и глубоко разработал теорию познания после чего создал труд по логике который сохраняет свое непреходящее значение и сейчас.
34793. Малые сократические школы: киники, киренаики, мегарики 36.5 KB
  ученик Сократа. Кроме Аристиппа ученика Сократа и софистов к составу школы принадлежали: Аретэ дочь Аристиппа Аристипп младший внук основателя школы Антипатр Феодор Гегезий и Анникерес. подобно киникам поняли учение Сократа односторонне. Громкая молва о мудрости Сократа привлекла его в Афины где он сделался учеником философа.