79695

Математика Християнського середньовіччя та епохи Відродження

Лекция

Математика и математический анализ

Опанувавши елементарні знання, кращі учні монастирських і соборних шкіл вивчали «сім вільних мистецтв», які поділялися на дві частини: тривіум (граматика, риторика, діалектика) і квадривіум (арифметика, геометрія, астрономія, музика)

Украинкский

2015-02-14

485.53 KB

0 чел.

ЛЕКЦІЯ 8

Тема.  Історична панорама розвитку математики

План

1. Математика Християнського середньовіччя та епохи Відродження

Література

1. История математики с древнейших времен до начала XIX столетия : в   3-х тт. / Под редакцией А.П. Юшкевича. – М.: Наука, 1970-1972. – 1146 с.

2. История отечественной математики [Текст] : в 4 т. / ред. И. З. Штокало. – К. : Наукова думка, 1966 – 1970. Т. 1 : С древнейших времен до конца XVIII в. – 1966. – 492 с. 

3. Ленюк М.П. Нариси з історії математики. Навчальний посібник / М.П. Ленюк. ‒ Чернівці : Прут, 2010. ‒ 360 с.

4. Рыбников К.А. История математики / Рыбников К.А. – М. : Изд-во МГУ, 1974. – 456 с.

5. Даан-Дальмедико А. Пути и лабиринты. Очерки по истории математики: Пер. с франц. / Даан-Дальмедико А., Пейффер Ж. М. :«Мир», 1986. 432 с.

6. Стройк Д.Я. Краткий очерк истории математики. Пер. с немец. / Стройк Д.Я. М. :«Наука», 1984. 283 с.

1. Математика Християнського середньовіччя та епохи Відродження. Епоха середньовіччя охоплює період V – початок XVI ст. Від Римської імперії вона успадкувала християнську релігію в її західному різновиді – католицизм (з 1054 р.). Християнська церква стала головною ідеологічною силою, яка визначила розвиток культури.

Опанувавши елементарні знання, кращі учні монастирських і соборних шкіл вивчали «сім вільних мистецтв», які поділялися на дві частини: тривіум (граматика, риторика, діалектика) і квадривіум (арифметика, геометрія, астрономія, музика). Вершиною навчання вважалося богослов'я. Незважаючи на релігійний характер навчання, ці школи сприяли поширенню письменності, підвищенню загальної культури населення країн Західної Європи.

Діти світських феодалів здобували лицарське виховання, що ставило за мету сформувати в майбутнього лицаря («пана землі і селян») кріпосницьку мораль, навчити поводитись у «вищому товаристві» і дати військово-фізичну підготовку. В основу світського виховання лицарів було покладено вивчення «вільних благочестей» (їзда верхи, стріляння з лука, метання списа, фехтування, плавання, полювання, гра в шахи, вміння складати і співати пісні).

До 7 років діти феодалів (хлопчики) виховувались у сім'ях, а з 7 до 14 років — виконували обов'язки пажа при дружині сюзерена; від 14 до 21 року вони були зброєносцями сюзерена, а відтак їх урочисто посвячували в лицарі. Серед них було чимало неписьменних і брутальних людей.

Міські купці та ремісники домоглися відкриття для своїх дітей гільдійських і цехових шкіл, в яких навчали рідною мовою. Ці школи мали своїм завданням допомогти дітям у їх майбутніх торговельних справах та в розвитку різних ремесел. Згодом гільдійські та ремісничі школи було перетворено на міські початкові школи, що утримувалися на кошти міського самоврядування (магістрату). Учнів навчали читати, писати, лічити та релігії. Виникнення таких шкіл було прогресивним явищем, оскільки руйнувало монополію церкви у шкільній справі. Церква боролася проти їх поширення, але зупинити їх розвитку вже не могла.

Виховання дітей селян мало практичний характер. Ним займалися батьки у повсякденній праці в хаті, на городі, на полях.

Виховання й освіта жінок також мали становий характер. Дівчата знатного походження виховувались у сім'ях або в пансіонах при жіночих монастирях, їх вчили читати й писати, а в пансіонах — ще й латинської мови, благородних манер. Дівчата з непривілейованих станів набували вдома вміння вести господарство, навчалися рукоділля та релігійних настанов.

Учені, невдоволені тим, що церковні школи ігнорували нові знання, що не відповідали догматам віри, у XII ст. почали об'єднуватись у позацерковні спілки. Вони стали ініціаторами створення вищих спеціальних шкіл — університетів. Перші університети було відкрито в Болоні (1158), Оксфорді (1168), Кембриджі (1209), Парижі (1253), Празі (1348) та в інших містах Європи. Ці освітні заклади мали самоврядування і користувалися певною автономією щодо церкви, феодалів і міських магістратів.

У середньовічних університетах було чотири факультети: артистичний (підготовчий) з терміном навчання 5–7 років, упродовж яких вивчали «сім вільних мистецтв», юридичний, медичний і богословський (термін навчання 5–6 років). Після закінчення артистичного факультету студенти могли вступати на інші факультети. Особи, які закінчували цей факультет, діставали ступінь «магістра мистецтва». Особи, які закінчували повний курс навчання в університеті (1113 років), здобували вище звання «доктор наук».

Основними методами занять в університетах були лекції та диспути. Студенти виконували багато вправ і писали письмові роботи — трактати.

Середньовічні університети сприяли розвиткові міст, певною мірою підготували культурний дух епохи Відродження.

Викладання в усіх університетах Європи велося латиною. Воно здійснювалось у формі лекцій та диспутів, у яких активну участь брали як професори, так і студенти.

Леона́рдо Піза́нський (Leonardo Pisano), більш відомий як Фібоначчі (Fibonacci (син Боначчі), близько 1170 — близько 1250[1]), — італійський математик, який розглянув ідею так званих чисел Фібоначчі і вважається одним з найвидатніших західних математиків Середньовіччя[2]. Найбільш відомий під прізвиськом Фібоначчі (Fibonacci); про походження цього псевдоніма є різні версії. За однією з них, його батько Гільєрмо мав прізвисько Боначчі («Добромисний»), а сам Леонардо прозивався filius Bonacci («син добромисного»). За іншою, Fibonacci походить від фрази Figlio Buono Nato Ci, що в перекладі з італійської означає «хороший син народився».

Значну частину засвоєних ним знань він виклав у своїй видатній " Книзі абака "(Liber abaci, 1202 ; до наших днів збереглася тільки доповнена рукопис 1228 р.). Ця книга містить майже всі арифметичні й алгебраїчні відомості того часу, викладені з винятковою повнотою і глибиною. Перші п'ять розділів книги присвячено арифметиці цілих чисел на основі десяткової нумерації. У VI і VII главі Леонардо викладає дії над звичайними дробами. У VIII—X книгах викладені прийоми вирішення завдань комерційної арифметики, засновані на пропорціях. У XI главі розглянуті задачі на змішання. У XII главі наводяться завдання на підсумовування рядів — арифметичної і геометричної прогресій, ряду квадратів і, вперше в історії математики, поворотного ряду, що приводить до послідовності так званих чисел Фібоначчі. У XIII главі викладається правило двох помилкових положень і ряд інших завдань, що приводяться до лінійних рівнянь. У XIV главі Леонардо на числових прикладах роз'яснює способи наближеного добування квадратного і кубічного коренів. Нарешті, в XV главі зібраний ряд завдань на застосування теореми Піфагора і велика кількість прикладів на квадратні рівняння.

«Практика геометрії» (Practica geometriae, 1220) містить різноманітні теореми, пов'язані з вимірювальним методам. Поряд з класичними результатами Фібоначчі наводить свої власні — наприклад, перший доказ того, що три медіани трикутника перетинаються в одній точці (Архімеду цей факт був відомий, але якщо його доведення і існувало, то до нас воно не дійшло).

У трактаті «Квітка» (Flos, 1225) Фібоначчі досліджував кубічне рівняння x^3 + 2x^2 + 10x = 20, запропоноване йому Іоанном Палермським на математичному змаганні при дворі імператора Фрідріха II. Сам Іван Палермский майже напевно запозичив це рівняння з трактату Омара Хайяма «Про докази задач алгебри», де воно наводиться як приклад одного з видів у класифікації кубічних рівнянь. Леонардо Пізанський досліджував це рівняння, показавши, що його коріння не може бути раціональним або ж мати вигляд однієї з квадратичних іррациональностей, що зустрічаються в X книзі Почав Евкліда, а потім знайшов наближене значення кореня в шестидесятеричной дробах, рівне 1; 22,07,42, 33,04,40, не вказуючи, проте, способу свого рішення.

«Книга квадратів» (Liber quadratorum, 1225), містить ряд завдань на рішення невизначених квадратних рівнянь. В одній із завдань, також запропонованою Іоанном Палермським, потрібно було знайти раціональне квадратне число, яке, будучи збільшено або зменшено на 5, знову дає раціональні квадратні числа.


Найбільший інтерес становить праця Фібоначчі «Книга абака» де він описав
послідовність Фібоначчі. Ця праця містить майже всі арифметичні й алгебраїчні відомості того часу, вона відіграла значну роль у розвитку математики в Західній Європі протягом кількох наступних століть. Саме за цією книгою європейці знайомилися з арабськими цифрами.

У своїх працях Фібоначчі лише нагадав свою послідовність людству, тому що вона була відома ще в найдавніші часи за назвою Золотий перетин.

Числа Фібоначчі

На честь вченого названо числовий ряд, в якому кожне наступне число дорівнює сумі двох попередніх. Ця числова послідовність носить назву чисел Фібоначчі: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, …

Цей ряд був відомий ще в Стародавній Індії задовго до Фібоначчі. Свою нинішню назву числа Фібоначчі отримали завдяки дослідженню властивостей цих чисел, проведеним вченим у його праці «Книга абака» (1202).

Праці

  1.  «Книга абака» (Liber abaci), написана в 1202 році, але дійшла до нас у другому своєму варіанті, що відноситься до 1228 р.
  2.  «Практика геометрії» (Practica geometriae) (1220)
  3.  «Книга квадратів» (Liber quadratorum) (1225)

Відродження або Ренеса́нс (фр. Renaissance — «Відродження») — культурно-філософський рух кінця Середньовіччя — початку Нового часу, що ґрунтувався на ідеалах гуманізму та орієнтувався на спадщину античності.

Специфіка культури Ренесансу:

  1.  Відродження інтересу до Античності;
  2.  Обґрунтування права науки і розуму на незалежність від церкви;
  3.  Антропоцентризм замість теоцентризму;
  4.  Світський характер культури та літератури.

Розвиток виробництва і розпад феодалізму в країнах Західної та Центральної Європи в XIVXVI ст. зумовили розквіт науки, техніки, культури і мистецтва. Цей період називають епохою Відродження.

Характерною його рисою є гуманізм, який підносить людину в суспільстві, бореться проти її приниження. Відповідно гуманістична педагогіка характеризується повагою до дітей, запереченням фізичних покарань, прагненням до вдосконалення здібностей дітей.

Микола Кузанський (нім. Nikolaus von Kues, лат. Nicolaus Cusanus, 1401 - 11 серпня 1464) - німецький кардинал, філософ, юрист, математик.

Кузанський був одним з перших творців нового сучасного способу мислення, що почав формуватися на межі Середньовіччя та Ренесансу. Його космологічні погляди не переходили за межі релігійних поглядів. Як церковний діяч, він повністю підкорявся системі середньовічного теологічного контрактату.

Аналізуючи математичні засоби відображення дійсності, він робить ряд епохальних висновків. Так, розглядаючи поняття нескінченного, докази існування нескінченності, Кузанський стверджує, що дане поняття є продуктом переміщення натурального ряду чисел у простір нашою уявою. У самому ж просторі ніякого натурального ряду нескінченних чисел не існує, ми творимо насилля над природою, підкоряючи її нашій уяві. Розум підкорений законові протилежностей, про що вчили ще давньогрецькі філософи, для думки важливо "так" чи "ні", коло чи багатокутник. Однак у самому розумі протилежності можуть і зливатися, коли ми їх розглянемо у нескінченних визначеннях. Нескінченний багатокутник перетворюється у коло. Якщо Бог визнається нескінченним у своїх можливостях та їх визначеннях, то у ньому зливаються всі протилежності, жодні спроби розуму не здатні тоді виявити його сутність. У нескінченному втрачає сенс різниця між найменшим та найбільшим. Ми не можемо знайти межі світу, бо обмеження уявляється нами через натуральний ряд чисел, що є насиллям над дійсністю нашого розуміння.

Лука Пачолі, фра Лука Бартоломея де Пачолі (Fra Luca Bartolomeo de Pacioli) (близько 14451517) — італійський чернець, математик, засновник принципів сучасного бухгалтерского обліку.

У 1494 публікує свою роботу з математики під назвою «Сума арифметики, геометрії, дробів, пропорцій і пропорційності» (Summa di arithmetica, geometrica, proportione et proportionalita). Один з розділів, який називається «Трактат про обчислення та записах» (Tractatus de computis et scripturis), містить формулювання основних принципів сучасного бухгалтерського обліку (подвійний запис, дебет, кредит, баланс тощо).

Джирола́мо Карда́но (*24 вересня 1501, Павія21 вересня 1576, Рим) — італійський фізик, математик, філософ, винахідник карданного механізму, автор формули для розв'язку кубічних рівнянь (1545).

Кардано був пристрасним любителем азартних ігор. «Побічним продуктом» його любові до гри в кістки стала книга «Про азартні ігри» (De Ludo alea, 1563), що містить основи теорії ймовірності, формулювання закону великих чисел, деякі питання комбінаторики. Праця Кардано «Велике мистецтво» (Ars magna, 1545) став наріжним каменем сучасної алгебри. У ній зроблено першу спробу внести систему до вивчення рівнянь, здійснено деякі операції з уявними числами. У цій же роботі було вперше опубліковано способи розв'язку рівнянь третього і четвертого ступенів (розв'язок рівняння четвертого ступеня було знайдено учнем Кардано — Лодовіко Феррарі (Лодовіко Феррарі (італ. Lodovico Ferrari, 2 лютого 1522, Болонья5 жовтня 1565, Болонья) — італійський математик, найбільш відомий знаходженням загального розв'язку рівняння четвертого степеня)). Це було чи найпершою публікацією математичного методу, невідомого раніше ні грекам, ні арабам. Публікація Ars magna викликала знамениту тяжбу Кардано щодо пріоритету в розв'язку цієї задачі з Нікколо Тарталья, лектором з Венеції. Спосіб розв'язку кубічних рівнянь було знайдено Сципіоном дель Ферро з Болоньї ще 1515 року. 1535 року Тарталья незалежно від нього винайшов свій метод і повідомив про нього Кардано, узявши з останнього клятву зберегти відкриття в таємниці. Проте Кардано опублікував у своїй книзі все, що було йому відомо про кубічні рівняння, заявивши, що знав про зміст роботи Ферро і це звільняє його від усіх зобов'язань стосовно Тартальї. 1546 року Тарталья звинуватив Кардано у віроломстві. Тяжба скінчилася після публічного диспуту 1548 року, на якому інтереси Кардано захищав Феррарі.

Нікколо́ Тарта́лья (італ. Niccolò Tartaglia), справжнє ім'я Нікколо Фонтана (італ. Niccolò Fontana) (* близько 1499, Брешія — † 13 грудня 1557, Венеція) — італійський математик.

Наприкінці 1534 р. Тарталья одержав виклик математичний турнір від Антоніо Фіоре — учня відомого професора математики Болонського університету Сципіона дель Ферро. Нікколо дізнався, що Фіоре володіє секретом розв'язання кубічного рівняння, який йому повідомив Ферро. Шляхом титанічних зусиль Тартальї за кілька днів до диспуту теж вдалося знайти спосіб розв'язання такого рівняння.

Обкладинка трактату «Деякі питання та інші винаходи Нікколо Тарталья»

Двобій відбувся 12 лютого 1535 р. Кожному із супротивників треба було розв'язати по 30 задач. За дві години Тарталья справився з усіма задачами, запропонованими йому Фіоре, а той не розв'язав жодної задачі свого противника (Фіоре запропонував переважно кубічні рівняння, а Тарталья — задачі з різних розділів математики). Перемога була повною, вчений прославився на всю Італію і отримав кафедру математики у Вероні.

Своїм методом розв'язування кубічного рівняння Тарталья поділився з відомим ученим Джироламо Кардано, що був одночасно математиком і механіком, лікарем і алхіміком, хіромантом і особистим астрологом римського папи, узявши з того слово ніколи не публікувати повідомлений йому метод розв'язання. Але через шість років Кардано порушив свою клятву — він видав трактат «Велике мистецтво, або про правила алгебри» (1545 р.), де виклав алгоритми розв'язування рівнянь третього і четвертого степеня. Щоправда, Кардано чесно написав у передмові, що:

«

...у наш час Сципіон дель Ферро відкрив формулу... Нікколо Тарталья з Брешії, наш друг, що був викликаний на змагання з учнем дель Ферро по імені Антоніо Маріо Фіоре, розв’язав, щоб не бути переможеним, ту ж саму проблему і після довгих прохань передав секрет мені.

 »

Але все одно Тарталья дуже образився, і написав Кардано гнівного листа. За честь Кардано заступився його учень Лодовіко Феррарі (якому належить першість у розв'язанні в радикалах рівняння четвертого степеня). Він викликав Тарталью на публічний диспут з «геометрії, арифметики та по'язаними з ними дисциплінами, такими як астрологія, музика, космографія, перспектива, архітектура та ін.»

Двобій відбувся 10 серпня 1548 р. у Мілані. Ворожнечо налаштована публіка змусила Тарталью припинити диспут і терміново залишити Мілан. Переможцями стали вважати (не зовсім об'єктивно) Феррарі та його вчителя Кардано. І навіть формулу для коренів кубічного рівняння стали називати формулою Кардано. Сучасні історики науки вважають, що більш справедливо її називати формулою Ферро-Тартальї-Кардано.

Тарталья написав декілька книг, найбільш важлива з яких була видана у Венеції під назвою «Загальний трактат про число і міру» (ч.1-6, 1556—1560). У ній він виклав свої оригінальні дослідження з арифметики, алгебри і геометрії. Зокрема, у книзі вперше застосовуються круглі дужки. Трактат містить також таблицю так званих «біноміальних коефіцієнтів». Ця таблиця була частково відома в Індії ще в 2 ст. до н. е. Більшу популярність ця таблиця отримала в 17 ст. у зв'язку з працями Б. Паскаля, тому іноді її називають «трикутником Паскаля».

Тарталья досліджував також проблеми механіки, балістики, геодезії. У праці «Нова наука» (1537) він вперше розглянув питання про траєкторію польоту снаряда і встановив, що найбільша дальність польоту досягається при нахилу ствола гармати під кутом 45 градусів. Його книга «Різні питання і винаходи» (1546) присвячена фортифікації. Учений здійснив переклад італійською мовою деяких праць Архімеда та Евкліда.

Іменем Фонтана названо кратер на видимій стороні Місяця.

Математика у первісному суспільстві

Уже в найперших писемних знахідках зустрічаються знаки, що свідчать про математичні знання та вимірювання часу на основі спостереження за небесними світилами. Доісторичні артефакти, виявлені в Африці та Франції, вказують на здійснення перших спроб квантифікації часу. Існує припущення, що відліком часу займалися жінки, які реєстрували місячні цикли або фази місяця. Паралельно розвивалися уявлення про число: вірогідно, спостерігаючи за групами (стадами) тварин, люди почали розрізняти поняття "один", "два" та "багато". Саме такі кількісні уявлення донині збереглися у зулусів, африканських пігмеїв та ще ряду племен - австралійських, бразильських тощо. Пізніше числа об'єднувались у групи, утворюючи більші одиниці лічби; зазвичай використовували пальці однієї чи обох рук, або ж рук і ніг, що давало лічбу з основою 5, 10 або 20. Записи велись позначенням одиниць, зарубками, камінцями тощо.

Математика найдавніших цивілізацій

Найдавніші відомості про використання математики — господарські задачі в Стародавньому Єгипті (Папірус Рінда, Московський папірус, Шкіряний сувій єгипетської математики) та Вавилонії (Математичні тексти Суз). Вона використовувалась для календарних обрахунків, розподілу врожаю, організації суспільних робіт, збирання податків.

Антична Греція

Найзначніша роль в розвитку західної математики належать античній грецькій цивілізації.

  1.  Фалес 
  2.  Піфагор 
  3.  Евклід 
  4.  Аполлоній 
  5.  Архімед 
  6.  Діофант 
  7.  Герон 
  8.  Птолемей 

Арабська цивілізація

  1.  Аль-Хорезмі 
  2.  Аль-Біруні 
  3.  Омар Хайям 
  4.  Абу-ль-Вафа 

Християнське середньовіччя

  1.  Фібоначчі 

Відродження

  1.  Микола Кузанський 
  2.  Лука Пачолі 
  3.  Джироламо Кардано 

17 століття

  1.  Вієт 
  2.  Непер 
  3.  Ферма 
  4.  Паскаль 
  5.  Декарт 
  6.  Лейбніц 
  7.  Ньютон 
  8.  Бернуллі 

18 століття

  1.  Муавр 
  2.  Тейлор 
  3.  Стірлінг 
  4.  Ейлер 
  5.  Даламбер 
  6.  Лагранж 
  7.  Лаплас 
  8.  Лежандр 
  9.  Монж 
  10.  Ампер 

19 століття

  1.  Пуасон 
  2.  Коші 
  3.  Фур'є 
  4.  Абель 
  5.  Софус Лі 
  6.  Бойяі 
  7.  Больцано 
  8.  Гаус 
  9.  Якобі 
  10.  Діріхле 
  11.  Ріман 
  12.  Гільберт 
  13.  Кронекер 
  14.  Веєрштрас 
  15.  Кантор 
  16.  Мебіус 
  17.  Галуа 
  18.  Жордан 
  19.  Келі 
  20.  Сільвестр 
  21.  Вільям Ровен Гамільтон 
  22.  Дедекінд 
  23.  Вебер 
  24.  Анрі Пуанкаре 
  25.  Клейн 
  26.  Марков 
  27.  Буняковський 
  28.  Лобачевський 
  29.  Ляпунов 
  30.  Остроградський 

20 століття

  1.  Гедель 
  2.  Ніколя Бурбакі 
  3.  Колмогоров 
  4.  Стєклов 
  5.  Банах 
  6.  Лузін 
  7.  Арнольд 
  8.  Боголюбов 
  9.  Адамар 
  10.  Александров 
  11.  Ахієзер 
  12.  Бернштейн 
  13.  Вінер 
  14.  Глушков 
  15.  Ердьош 
  16.  Даан-Дальмедико А., Пейффер Ж. Пути и лабиринты. Очерки по истории математики: Пер. с франц.—М.:«Мир», 1986. 432 с., ил.
  17.  Стройк Д.Я. Краткий очерк истории математики. Пер. с немец.—М.:«Наука», 1984. 283 с., ил.

Математик 

Годы жизни

Страна

Абель Нильс

1802-1829

Норвегия

Авиценна

ок. 980-1037

Восток

Ал-Хорезми

IX в.

Восток

Александров П. С.

1896-1982

Россия

Ампер Андре

1775-1836

Франция

Араго Доминик

1786-1853

Франция

Архимед

287-212 до н.э.

Греция

Бертран Жозеф

1822-1900

Франция

Больяй Янош

1802-1860

Венгрия

Виет Франсуа

1540-1603

Франция

Виноградов И. М.

1891-1983

Россия

да Винчи Леонардо

1452-1519

Италия

Галуа Эварист

1811-1832

Франция

Гамильтон Уильям

1805-1865

Англия

Гаусс Карл

1777-1855

Германия

Гипатия Александрийская

370-415

Греция

Гюйгенс Христиан

1629-1695

Нидерланды

Даламбер Жан

1717-1783

Франция

Демокрит

ок.460-370 до н.э.

Греция

Евклид

III в. до н.э.

Греция

Келдыш М. В.

1911-1978

Россия

Кеплер Иоганн

1571-1630

Германия

Клеро Алексис

1713-1765

Франция

Ковалевская С. В.

1850-1891

Россия

Колмогоров А. Н.

1903-1987

Россия

Крылов А. Н.

1863-1945

Россия

Лейбниц Готфрид

1646-1716

Германия

Линник Ю. В.

1915-1972

Россия

Лобачевский Н. И.

1792-1856

Россия

Лузин Н. Н.

1883-1950

Россия

Ляпунов А. М.

1857-1918

Россия

Магницкий Л. Ф.

1669-1739

Россия

Марков А. А.

1856-1922

Россия

Мергелян С. Н.

р. 1928

Россия

Монж Гаспар

1746-1818

Франция

Новиков П. С.

1901-1975

Россия

Ньютон Исаак

1642-1727

Англия

Остроградский М. В.

1801-1861

Россия

Пифагор

580-500 до н. э.

Греция

Понтрягин Л. С.

1908-1988

Россия

Пуассон Симеон

1781-1840

Франция

Соболев С. Л.

1908-1989

Россия

Фалес

624-547 до н. э.

Греция

Хайям Омар

ок. 1040-1123

Восток

Чеботарев Н. Г.

1894-1947

Россия

Чебышев П. Л.

1821-1894

Россия

Шафаревич И. Р.

р. 1923

Россия

Шмидт О. Ю.

1891-1956

Россия

Шнирельман Л. Г.

1905-1938

Россия

Эйлер Леонард

1707-1783

Россия

Глава V. Западная Европа. - Начало

1. Наиболее развитой частью Римской империи как экономически, так и культурно всегда был Восток. Земледелие Запада было экстенсивным, никогда не имело в своей основе орошения, и это не содействовало астрономическим исследованиям. Действительно, Запад очень хорошо обходился минимумом астрономии, известным объемом практической арифметики и некоторыми приемами измерения для целей торговли и землемерия, стимулы же для развития этих наук шли с Востока. Когда Восток и Запад оказались политически разобщенными, такие стимулы почти полностью исчезли. Малоподвижная цивилизация Западной Римской империи сохранялась в течение ряда столетий лишь с незначительными изменениями или разрывами. Средиземноморское единство античной цивилизации тоже оставалось нетронутым, даже варварские вторжения не очень сказались на нем. Во всех германских королевствах, за исключением, пожалуй, британского, экономические условия, общественные установления и интеллектуальная жизнь в основном сохранялись такими, какими они были во время упадка Римской империи. Основой хозяйственной жизни было земледелие, причем рабы постепенно, заменялись свободными земледельцами и арендаторами, но, кроме того, существовали процветавшие города и широко развитая торговля на основе денежного обращения. Главным авторитетом в греко-римском мире после падения Западной империи в 476 г. были на равных правах константинопольские императоры и римские папы. Католическая церковь Запада своими учреждениями и своим языком продолжала в меру своих возможностей культурные традиции Римской империи в германских государствах. Монастыри и образованные миряне в известной мере сберегали греко-римскую цивилизацию. Один из таких мирян, дипломат и философ Аниций Манилий Северин Боэций (Boethius), был автором математических произведений, чей авторитет сохранялся в западном мире в течение более чем тысячи лет. На этих работах сказалось общее состояние культуры – они бедны содержанием, и то, что они сохранились, быть может, объясняется убеждением, что их автор в 524 г. погиб как мученик за католическую веру. Его «Основы арифметики» (Institutio arithmetica) – поверхностный перевод Никомаха, содержащий частично теорию чисел пифагорейцев, что вошло в средневековую науку как часть старинного тривиума и квадривиума: арифметика, геометрия, астрономия и музыка.

Трудно указать то время, когда на Западе экономика древней Римской империи исчезла и уступила место новому феодальному порядку. В какой-то мере этот вопрос разъясняется, если принять гипотезу Пиренна, а именно, что конец древнего западного мира наступил с экспансией ислама. Арабы лишили Византийскую империю всех ее провинций на восточных и южных берегах Средиземного моря и превратили восточную часть Средиземного моря в закрытое мусульманское озеро. На несколько столетий они чрезвычайно затруднили торговые связи между Ближним Востоком и христианским Западом. Пути интеллектуального общения между арабским миром и северными частями бывшей Римской империи в течение столетий были загромождены, хотя никогда не были перекрыты полностью.

В эту эпоху во франкской Галлии и в других бывших частях Римской империи хозяйственная деятельность широкого масштаба постепенно сворачивается, города приходят в упадок, доходы от налогов становятся незначительными. Денежное обращение вытесняется обменом, преобладает местная торговля. Западная Европа приходит в полуварварское состояние. С упадком торговли возрастает значение земельной аристократии, и крупные северофранкские землевладельцы, возглавляемые Каролингами, становятся решающей силой в стране франков. Экономические и культурные центры перемещаются к северу, в северную Францию и в Британию. Отделение Запада от Востока настолько ограничивает реальную власть пап, что папство объединяется с Каролингами, символом чего было коронование Карла Великого в 800 г. как императора Священной Римской империи. Западное общество стало феодальным и церковным, его ориентация была северной и германской.

2. В течение первых столетий западного феодализма даже в монастырях не очень высоко ставят математику. В земледельческом обществе этого периода, вновь ставшем примитивным, почти что отсутствовали факторы, которые содействовали бы развитию математики даже непосредственно практического характера. Математика в монастырях сводилась всего лишь к скромной арифметике церковного назначения, которой пользовались главным образом для вычисления пасхалий (так называемый «компутус». Боэций был высшим авторитетом. Известное значение среди этих математиков-церковников приобрел уроженец Британии Алкуин, связанный с двором Карла Великого. Его написанные по-латыни «Задачи для оттачивания ума юношей» содержат подборку задач, имевшую влияние на составителей учебников в течение ряда столетий. Многие из этих задач восходят еще к древнему Востоку. Например:

«Собака гонится за кроликом, который находится впереди нее в 150 футах, и при каждом прыжке делает 9 футов, в то время как кролик прыгает на 7 футов. За сколько прыжков собака нагонит кролика?»

«Через реку надо перевезти троих: волка, козу и кочан капусты; на лодке, кроме перевозчика, может поместиться только один из трех. Как перевезти их, чтобы коза не могла съесть капусту, а волк не мог съесть козу?»

Другим математиком-церковником был Герберт, французский монах, который в 999 г. стал папой, приняв имя Сильвестра II. Под влиянием Боэция он написал несколько трактатов, но его значение как математика обусловлено в основном тем, что он был одним из первых западных ученых, ездивших в Испанию и изучавших математику арабского мира.

3. В развитии западного, восточного и раннего греческого феодализма имеются существенные различия. Экстенсивный характер западного земледелия делал излишней обширную систему бюрократической администрации, так что это не могло послужить основой для деспотизма восточного типа. На Западе не было возможности в широкой мере обеспечить пополнение рабов. Когда села Западной Европы вырастали в города, эти города превращались в самоуправляющиеся единицы и горожане не могли вести праздную жизнь, используя труд рабов. Это одна из основных причин, в силу которых греческие полисы и западные города, на начальных стадиях имеющие много общего, в дальнейшем становятся резко отличными друг от друга. Население средневековых городов должно было полагаться на свою собственную изобретательность в деле улучшения условий своей жизни. В двенадцатом, тринадцатом и четырнадцатом столетиях города выходят победителями в ожесточенной борьбе против феодалов-землевладельцев, сочетавшейся с гражданскими войнами. Основа их успехов – не только быстрое развитие торговли и денежного хозяйства, но и постепенное усовершенствование техники. Феодальные князья часто поддерживали города в их борьбе с более мелкими феодалами и при возможности устанавливали свою власть над городами. В конечном счете это повело к возникновению в Западной Европе первых национальных государств.

Города начали устанавливать коммерческие связи с Востоком, который все еще был центром цивилизации. Такие связи устанавливались иногда мирными средствами, иногда насильственным путем, как во времена крестовых походов. Первыми наладили торговые связи итальянские города, за ними последовали города Франции и Центральной Европы. За купцом и за солдатом следовали ученые, а иногда они были первыми. Испания и Сицилия были самыми близкими пунктами соприкосновения между Западом и Востоком, именно здесь западные купцы и студенты познакомились с цивилизацией стран ислама. Когда в 1085 г. Толедо был отвоеван христианами у мавров, студенты западных стран толпами устремились в этот город, чтобы изучать науку арабов. Они часто пользовались услугами переводчиков-евреев, а в двенадцатом столетии мы видим в Испании Платона из Тиволи, Герардо из Кремоны, Аделарда из Вата и Роберта из Честера – все они переводят на латинский язык арабские математические рукописи. Именно так, через посредство арабов, Европа познакомилась с греческими классиками, а к этому времени Западная Европа была достаточно развита, чтобы оценить эти знания.

4. Как мы уже сказали, первые могущественные коммерческие города возникли в Италии. Здесь в течение двенадцатого и тринадцатого столетий Генуя, Пиза, Венеция, Милан и Флоренция вели обширную торговлю с арабским миром и с Севером. Итальянские купцы посещали Восток и знакомились с его цивилизацией. Путешествия Марко Поло доказывают бесстрашие этих искателей приключений. Как ионийские купцы почти за две тысячи лет до этого, они стремятся познакомиться с наукой и искусствами более древней цивилизации не только для того, чтобы повторять их, но и для того, чтобы использовать их в своей собственной новой системе. А в двенадцатом и тринадцатом столетиях мы видим уже рост банковского дела и зачатки капиталистической формы производства.

Первым из этих купцов, чьи математические работы выявляют известную зрелость, был Леонардо из Пизы. Леонардо, которого называли также Фибоначчи («сын Боначчо»), путешествовал по Востоку как купец. Вернувшись, он написал свою «Книгу абака» (Liber abaci, 1202 г.), заполненную арифметическими и алгебраическими сведениями, собранными им во время путешествий. В книге «Практика геометрии» (Practica geometriae, 1220 г.) Леонардо подобным же образом рассказывает о том, что он открыл в области геометрии и тригонометрии. Возможно, что он был к тому же оригинальным исследователем, так как в его книгах есть немало примеров, по-видимому, не имеющих точных соответствий в арабской литературе. Впрочем, он цитирует ал-Хорезми, например, при рассмотрении уравнения . Задача же, которая приводит к «ряду Фибоначчи»: 0, 1, 1, 2, 3, 5, 8, 13, 21, …, каждый член которого есть сумма двух ему предшествующих, – по-видимому, является новой. Должно быть, новым является и его замечательное доказательство того, что корни уравнения  нельзя выразить с помощью евклидовых иррациональностей вида  (следовательно, их нельзя построить с помощью только циркуля и линейки). Леонардо доказал это, проверяя каждый из пятнадцати случаев Евклида, а затем приближенно определил положительный корень этого уравнения, вычислив шесть шестидесятичных знаков.

Ряд Фибоначчи получается при решении следующей задачи:

Сколько пар кроликов может произойти от одной пары в течение года, если а) каждая пара каждый месяц порождает новую пару, которая со второго месяца становится производителем, и б) кролики не дохнут?

«Книга абака» была одним из источников для проникновения индийско-арабской системы нумерации в Западную Европу. Отдельные случаи применения этой нумерации имели место за столетия до Леонардо – из Испания и с Востока ее привозили купцы, посланники, ученые, паломники и солдаты. Самый древний европейский манускрипт, содержащий числовые знаки этой системы, – это «Вигиланский кодекс» (Codex Vigilanus), написанный в Испании в 976 г. Однако эти десять знаков медленно проникали в Западную Европу, и самая ранняя французская рукопись, в которой мы их находим, относится к 1275 г. Греческая система нумерации оставалась общепринятой на побережье Адриатики в течение столетий. Вычисления часто производили на старинном абаке, доске со счетными жетонами или камушками (часто это сводилось к прямым линиям, проведенным на песке), в основном сходном со счетными досками, которыми все еще пользуются русские, китайцы, японцы. Для записи результатов вычисления на абаке в ходу были римские цифры. В течение средних веков и даже позже мы находим римские цифры в торговых книгах, и это указывает на то, что в конторах использовали абак. Против введения индийско-арабских знаков выступали и широкие круги, так как использование этих обозначений затрудняло чтение торговых книг. В установлениях «Искусства обмена» (Arte del Cambio, 1299 г.) флорентийским банкирам запрещалось пользоваться арабскими цифрами. Лишь в четырнадцатом столетии итальянские купцы начали применять некоторые арабские цифры в своих счетных книгах.

5. Вместе с расширением торговли постепенно интерес к математике стал распространяться и на северные города. Поначалу это был практический интерес, и в течение нескольких столетий арифметику и алгебру вне университетов преподавали профессиональные мастера счета, которые обычно не знали классиков, но зато обучали бухгалтерии и навигации. В течение долгого времени математика такого рода хранила явные следы своего арабского происхождения, о чем свидетельствуют такие слова, как алгебра и алгоритм.

Теоретическая математика не исчезла целиком в Средние века, но ею занимались не люди дела, а философы-схоласты. У схоластов изучение Платона и Аристотеля, в сочетании с размышлениями о природе божества, приводило к тонким рассуждениям относительно сущности движения, сущности континуума и бесконечности. Ориген, следуя Аристотелю, отрицал существование актуально бесконечного, но святой Августин в своем «Граде божьем» принимал всю последовательность целых чисел как актуальную бесконечность. Он говорит об этом так, что, по замечанию Георга Кантора, нельзя более энергично стремиться к трансфинитному и нельзя его лучше определить и обосновать, чем святой Августин. Писатели-схоласты средневековья, в частности Фома Аквинский, принимали аристотелевское «нет актуально бесконечного» (infinitum actu non datur) и каждый континуум рассматривали как потенциально делимый до бесконечности. Таким образом, не было наименьшего отрезка, ибо каждая часть отрезка обладала свойствами отрезка. Поэтому точка не была частью линии, поскольку точка неделима: «из неделимых нельзя составить какого-либо континуума» (ex indivisibilis non potest compari aliquod continuum). Точка могла образовать линию с помощью движения. Подобные рассуждения оказали влияние на изобретателей исчисления бесконечно малых в семнадцатом веке и на философов, занимавшихся трансфинитным, в девятнадцатом веке; Кавальери, Такке, Больцано и Кантор знали авторов-схоластов и размышляли о значении их идей.

Эти духовные лица иной раз получали результаты, которые имели непосредственное математическое значение. Томас Врадвардин, который стал архиепископом Кентерберийским, изучив Боэция, занимался исследованием звездчатых многоугольников. Наиболее значительным среди этих средневековых математиков из духовенства был Николай Орезм, епископ города Лизье в Нормандии, применявший дробные степени. Так как , он записывал 8 как  или как , что обозначало .

Он написал также трактат под названием «О размерах форм» (De latitudinibus formarum, ок. 1360 г.), в котором он графически сопоставляет значение зависимого переменного (latitudo) и независимого переменного (longitudo). Это нечто вроде перехода от координат на земной или небесной сфере, известных в античности, к современной координатной геометрии. Этот трактат несколько раз был напечатан между 1482 и 1515 гг., и возможно, что он оказал влияние как на математиков Ренессанса, так и на Декарта.

6. Математика развивалась главным образом в растущих торговых городах, под непосредственным влиянием торговли, навигации, астрономии и землемерия. Горожан интересовал счет, арифметика, вычисления. Зомбарт окрестил эту заинтересованность бюргерства пятнадцатого и шестнадцатого столетий немецким словом Rechenhaftigkeit. Ведущими представителями этой приверженности к практической математике были мастера счета, и только изредка к ним присоединялся кто-либо из университетских людей, понявший благодаря изучению астрономии важность улучшения вычислительных методов. Центрами новой жизни были итальянские города и такие города Центральной Европы, как Нюрнберг, Вена и Прага. После падения Константинополя в 1453 г., когда Византийская империя перестала существовать, многие ученые греки переселились в города Запада. Возрос интерес к оригинальным греческим произведениям, и стало легче удовлетворять этот интерес. Профессора университетов и образованные миряне изучали греческие тексты, а честолюбивые мастера счета не оставались в стороне и старались понять эту новую науку на свой манер.

Типичен для этого периода Иоганн Мюллер из Кенигсберга, иначе Региомонтанус, ведущая математическая фигура пятнадцатого столетия. В деятельности этого замечательного вычислителя, мастера инструментов, печатника и ученого выявились те достижения европейской математики, которые были сделаны в течение двух столетий после Леонардо Пизанского. Региомонтанус усердно переводил и публиковал доступные ему математические рукописи классиков. Еще его учитель, венский астроном Георгий Пурбах (Peurbach), автор астрономических и тригонометрических таблиц, начал переводить с греческого языка астрономию Птолемея. Региомонтанус закончил этот перевод и, кроме того, перевел Аполлония, Герона и наиболее трудного из всех – Архимеда. Его главное оригинальное произведение – книга «О различных треугольниках» (De triangulis omnimodus libri quinkue, 1464 г., напечатана лишь в 1533 г.), полное введение в тригонометрию, отличающееся от наших нынешних учебников главным образом отсутствием современных удобных обозначений. Здесь содержится теорема синусов для сферического треугольника. Все теоремы все еще формулируются словесно. Отныне тригонометрия становится наукой, не зависящей от астрономии. Нечто подобное было сделано Насир-ад-Дином в тринадцатом столетии, но существенно то, что его труды не получили значительного дальнейшего развития, тогда как книга Региомонтануса оказала глубокое влияние на дальнейшее развитие тригонометрии и на ее применение к астрономии и алгебре. Много труда положил Региомонтанус и на вычисление тригонометрических таблиц. Он составил таблицу синусов с интервалом в одну минуту, принимая радиус окружности равным 60 000 (опубликована в 1490 г.).

Значения синуса рассматривались как отрезки, представляющие полухорды соответствующих углов в круге, поэтому они зависели от длины радиуса. При большем радиусе достигалась большая точность и не надо было применять шестидесятичные (или десятичные) дроби. Систематическое применение радиуса, равного 1, и тем самым определение синуса, тангенса и т. д. как отношений (чисел) идет от Эйлера (1748 г.).

7. До сих пор прежние достижения греков и арабов не были заметным образом превзойдены. Классики оставались nec plus ultra (то, чего нет выше) науки. Поэтому, когда итальянские математики в начале шестнадцатого века на деле показали, что можно развить новую математическую теорию, которой не было у древних и у арабов, это было большой и вдохновляющей неожиданностью. Такая теория, которая привела к общему алгебраическому решению кубических уравнений, была открыта Сципионом дель Ферро и его учениками в Болонском университете.

В итальянских городах и после эпохи Леонардо математика занимала второе место. В пятнадцатом столетии мастера счета в Италии владели арифметическими операциями, включая действия с иррациональностями (без каких-либо угрызений математической совести), а итальянские художники были хорошими геометрами. Вазари в своих «Жизнеописаниях» подчеркивает, что художники пятнадцатого века проявили большой интерес к геометрии пространства. Одним из их достижений была разработка теории перспективы такими людьми, как Альберти и Пьеро делла Франческа; последний написал также книгу о правильных телах. Мастера счета нашли своего истолкователя в лице францисканского монаха Луки Пачоли (Pacioli), чья книга «Сумма арифметики», одна из первых печатных математических книг, появилась в 1494 г. Написанная на итальянском языке, притом на не слишком изящном, она содержала все, что тогда знали по арифметике, алгебре и тригонометрии. Отныне пользование индийско-арабскими цифрами стало общепринятым, а арифметические обозначения в этой книге не слишком отличаются от наших. Пачоли закончил свою книгу замечанием, что решение уравнений  столь же невозможно при современном ему состоянии науки, как и квадратура круга.

Это стало отправной точкой для математиков Болонского университета. Болонский университет в конце пятнадцатого столетия был одним из самых больших и самых известных в Европе. Было время, когда только его астрономический факультет насчитывал шестнадцать лекторов. Студенты толпами устремлялись из всех частей Европы, чтобы слушать здесь лекции, а также на публичные диспуты, которые привлекали многих спортивно настроенных слушателей. В разные времена студентами этого университета были Пачоли, Альбрехт Дюрер и Коперник. Для новой эпохи характерным было стремление не только усвоить науку классиков, но и создать новое, перешагнуть через границы, указанные классиками. Искусство книгопечатания и открытие Америки указывали на наличие таких возможностей. Но можно ли создать новую математику? Древние греки и восточные народы испытывали свою изобретательность на решении уравнений третьей степени, но они только численно решили несколько частных случаев. Теперь же болонские математики пытались найти общее решение.

Эти уравнения третьей степени можно было свести к трем типам:

,

где  и  – положительные числа. Они были тщательно исследованы профессором Сципионом дель Ферро, который умер в 1526 г. Можно сослаться на авторитет Бортолотти, утверждающего, что дель Ферро действительно решил все типы. Он никогда не публиковал своих решений и рассказал о них лишь немногим друзьям. Но об этом открытии стало известно, и после смерти Сципиона венецианский мастер счета, по прозвищу Тарталья (заика), переоткрыл его приемы (1535 г.). Он публично продемонстрировал свои результаты, но по-прежнему держал втайне тот метод, с помощью которого он получил их. Наконец, он раскрыл свои соображения ученому доктору из Милана, Иерониму Кардано, который поклялся, что будет хранить их втайне. Однако, когда Кардано в 1545 г. опубликовал свою внушительную книгу по алгебре «Великое искусство» (Ars magna), Тарталья с возмущением обнаружил, что в ней полностью раскрыт его метод, с должным признанием заслуг автора открытия, но тем не менее уворованный. Завязалась ожесточенная полемика, с обеих сторон сыпались оскорбления. Защитником Кардано был молодой ученый из дворян Людовико Феррари. Эта перепалка породила несколько интересных документов, среди них «Вопросы» (Quaesiti) Тартальи (1546 г.) и «Вызовы» (Cartelli) Феррари (1547–1548 гг.), которые довели до всеобщего сведения всю историю этого замечательного открытия.

Полученное решение теперь известно как формула Кардано, и в случае уравнения  оно имеет вид

.

Мы видим, что это решение вводит выражения вида

,

отличные от евклидовых.

«Великое искусство» Кардано содержало и другое блестящее открытие: метод Феррари сведения решения общего уравнения четвертой степени к решению кубического уравнения. Уравнение Феррари имело вид , он его сводил к уравнению . Кардано рассматривал и комплексные числа, называя их «вымышленными», но он не был в состоянии что-либо сделать в так называемом «неприводимом случае» уравнения третьей степени, когда налицо три действительных корня, но они получаются в виде суммы или разности чисел, называемых теперь мнимыми.

Эта трудность была преодолена последним из больших болонских математиков шестнадцатого века, Рафаэлем Бомбелли, чья «Алгебра» появилась в 1572 г. В этой книге и в «Геометрии», написанной около 1550 г. и оставшейся в рукописи, он вводит последовательную теорию мнимых и комплексных чисел. Он записывает  как  (буквально так: , где  обозначает корень (radix), а  обозначает meno, т. е. меньше, минус). Это позволило Бомбелли разрешить неприводимый случай, показав, например, что

.

Книгу Бомбелли читали многие: Лейбниц изучал по ней кубические уравнения, Эйлер цитирует Бомбелли в своей «Алгебре», в главе об уравнениях четвертой степени. Отныне комплексные числа потеряли кое-что из сверхъестественности, хотя полное их признание произошло только в девятнадцатом столетии.

Любопытен тот факт, что впервые мнимости были введены в теории кубических уравнений в том случае, когда было ясно, что действительное решение существует, хотя и в нераспознаваемом виде, а не в теории квадратных уравнений, в которой они появляются в наших современных учебниках.

8. Алгебра и арифметика в течение многих десятилетий оставались у математиков любимым объектом исследований. Это стимулировалось не только Rechenhaftigkeit торговой буржуазии, но также и запросами землемерия и мореплавания, которые выдвигались правительствами новых национальных государств. Инженеры были нужны для возведения публичных зданий и военных сооружений. Астрономия, как и в предыдущие периоды, оставалась важной областью математических исследований. Это было время великих астрономических теорий Коперника, Тихо Браге и Кеплера. Возникло новое представление о вселенной.

Философская мысль отражала тенденции научного мышления, и Платон с его преклонением перед количественным и математическим рассуждением начал брать верх над Аристотелем. В частности, влияние Платона очевидно в работах Кеплера. Появлялись все более точные тригонометрические и астрономические таблицы, прежде всего в Германии. Таблицы Ретика (G. J. Rhäticus), законченные в 1596 г. его учеником Валентином Ото (Otho), содержали значения всех шести тригонометрических величин через каждые десять секунд с десятью знаками. Таблицы Питискуса (Pitiscus, 1613 г.) были доведены до пятнадцатого знака. Совершенствовалась техника решения уравнений, углублялось понимание природы их корней. Для этой эпохи характерен публичный вызов, сделанный в 1593 г. бельгийским математиком Адриеном ван Роменом (Roomen), решить уравнение сорок пятой степени

.

Ван Ромен указал некоторые частные случаи, например

,

что дает

.

Эти случаи подсказаны рассмотрением правильных многоугольников. Франсуа Виет, французский юрист, состоявший при дворе Генриха IV, решил задачу ван Ромена, заметив, что левая часть уравнения соответствует выражению  через . Поэтому решение можно найти с помощью таблиц. Виет нашел двадцать три решения вида , отбрасывая отрицательные корни.

Он также свел решение Кардано кубического уравнения к тригонометрическому, и при этом неприводимый случай перестал быть устрашающим, так как дело обошлось без введения выражений вида . Такое решение можно теперь найти в учебниках высшей алгебры.

Главное достижение Виета состоит в усовершенствовании теории уравнений (например, в работе «Введение в аналитическое искусство», In artem analyticam isagoge, 1591 г.). Он был одним из первых, кто числа изображал буквами. Использование численных коэффициентов, даже в «риторической» алгебре школы Диофанта, препятствовало общему рассмотрению алгебраических задач. Работы алгебраистов шестнадцатого века («коссистов», от итальянского слова cosa – «вещь», «нечто», – которым обозначали неизвестное) написаны с помощью очень сложных обозначений. Но «видовая логистика» Виета означала появление (наконец-то) общей символики, в которой буквы были использованы для выражения численных коэффициентов, знаки «+» и «–» применялись в нашем современном смысле, а вместо  писали: « квадратное». Эта алгебра все еще отличалась от нашей из-за того, что Виет придерживался греческого принципа однородности, согласно которому произведение двух отрезков обязательно рассматривалось как площадь и в соответствии с этим отрезки можно было складывать только с отрезками, площади с площадями, объемы с объемами. Даже сомневались в том, имеют ли смысл уравнения степени выше третьей, так как они могли быть истолкованы лишь в четырех измерениях, а это едва ли можно было понять в те времена.

В описываемый период вычислительная техника достигла новых высот. Виет улучшил результат Архимеда и нашел  с девятью десятичными знаками. Вскоре после того  было вычислено с тридцатью пятью десятичными знаками Лудольфом ван Цейленом (Ludolf van Ceulen) из Дельфта, использовавшим описанные и вписанные правильные многоугольники со все большим и большим числом сторон. Виет нашел также выражение  в виде бесконечного произведения (1593 г.); в наших обозначениях

.

Усовершенствование техники было результатом усовершенствования обозначений. А новые результаты показывают, что было бы неверным заявлять, будто люди, подобные Виету, «всего лишь» усовершенствовали обозначение. Подобные заявления пренебрегают глубокой зависимостью между содержанием и формой. Новые результаты часто становятся возможным лишь благодаря новому способу записи. Одним из примеров этого является введение индийско-арабских цифр, другим примером может быть символика Лейбница в анализе. Подходящее обозначение лучше отображает действительность, чем неудачное, и оно оказывается как бы наделенным собственной жизненной силой, которая в свою очередь порождает новое. За усовершенствованием обозначений Виета поколение спустя последовало применение алгебры к геометрии у Декарта.

9. В новых торговых государствах, особенно во Франции, Англии и Голландии, был большой спрос на инженеров и «арифметиков». Астрономия процветала во всей Европе. После открытия морского пути в Индию итальянские города уже не были на магистральной дороге, ведущей на Восток, хотя они еще оставались важными центрами. Вот в связи с этим мы среди великих математиков и вычислителей начала семнадцатого века видим инженера Симона Стевина, астронома Иоганна Кеплера, землемеров Адриана Влакка и Езекииля де Деккера.

Стевин, бухгалтер из Брюгге, стал инженером в армии принца Морица Оранского, оценившего в нем сочетание здравого смысла, оригинальности и теоретического мышления. В работе «Десятая» (La disme, 1585 г.) он ввел десятичные дроби, что было составной частью проекта унификации всей системы мер на десятичной основе. Это было одним из больших усовершенствований, которые стали возможными благодаря всеобщему принятию индийско-арабской системы счисления.

Другим большим усовершенствованием вычислительной техники было изобретение логарифмов. Некоторые математики шестнадцатого столетия в известной мере занимались сопоставлением арифметической и геометрической прогрессий, главным образом с целью облегчить работу со сложными тригонометрическими таблицами. Важным достижением на этом пути мы обязаны шотландскому лорду Джону Неперу (Neper или Napier), который в 1914 г. напечатал свое «Описание удивительного канона логарифмов» (Mirifici logarithmorum canonis descriptio). Основной идеей Непера было построение двух последовательностей чисел, связанных таким образом, что когда одна из них возрастает в арифметической прогрессии, другая убывает в геометрической. При этом произведение двух чисел второй последовательности находится в простой зависимости от суммы соответствующих чисел первой последовательности и умножение можно свести к сложению. С помощью такой системы Непер мог значительно облегчить вычислительную работу с синусами. Первоначальный способ Непера был в достаточной мере неуклюжим, так как его две последовательности соответствовали, в современных обозначениях, формуле

 (или ),

где .

Когда , мы получаем не , a

Такая система не удовлетворяла и самого Непера, как он сообщил своему почитателю Генри Бриггсу, профессору одного из лондонских колледжей. Они решили выбрать функцию , при которой  действительно дает

.

После смерти Непера Бриггс осуществил это предложение и в 1624 г. опубликовал свою «Логарифмическую арифметику», содержавшую «бригговы» логарифмы с четырнадцатью знаками для целых чисел от 1 до 20000 и от 90000 до 100000.

Пробел от 20 000 до 90000 был заполнен Езекиилем де Деккером, голландским землемером, который с помощью Влакка опубликовал в 1627 г. полную таблицу логарифмов.

Новое изобретение сразу же приветствовали математики и астрономы, в частности Кеплер, который до этого приобрел большой и нелегкий опыт в деле обширных вычислений.

Данное здесь истолкование логарифмов с помощью показательной функции исторически в известной мере ложно, так как понятие показательной функции восходит только к концу семнадцатого века. У Непера не было понятия основания логарифмов.

Натуральные логарифмы, связанные с функцией , появились почти одновременно с бригговыми, но их фундаментальное значение было понято лишь тогда, когда стали лучше понимать исчисление бесконечно малых.

Семнадцатое столетие

1. Стремительное развитие математики в эпоху Возрождения было обусловлено не только «счетным уклоном» (Rechenhaftigkeit) купеческого класса, но и эффективным использованием и дальнейшим усовершенствованием машин. Восток и классическая древность пользовались машинами, машинами вдохновлялся гений Архимеда. Однако существование рабства и отсутствие экономически прогрессивного городского уклада жизни сводили на нет пользу от машин в этих более древних общественных формациях. На это указывают труды Герона, в которых есть описание машин, но только предназначенных для развлечения или мистификации.

Во времена позднего средневековья машины вошли в употребление в небольших мануфактурах, на общественных стройках и в горном деле. Все это были предприятия, организованные городскими купцами или владетельными князьями прибыли ради; часто это происходило в борьбе с городскими гильдиями. Военное дело и навигация также побуждали совершенствовать орудия труда и в дальнейшем заменять их машинами.

Уже в начале четырнадцатого столетия в Лукке и в Венеции существовала хорошо организованная шелковая промышленность. Она основывалась на разделении труда и на использовании энергии воды. В пятнадцатом столетии в Центральной Европе горное дело развилось в капиталистическую промышленность, технической основой которой было использование насосов и подъемных машин, что позволяло вести бурение до все более глубоких пластов. Изобретение огнестрельного оружия и книгопечатания, строительство ветряных мельниц и каналов, постройка судов для океанского плавания требовали инженерного искусства и заставляли задумываться над техническими проблемами. Благодаря усовершенствованию часов, которыми пользовались астрономы и мореплаватели и которые часто устанавливались в общественных местах, замечательные произведения механического искусства стали доступны общему обозрению. Правильность движения часов и те возможности, которые они давали для точного указания времени, производили глубокое впечатление на философски настроенные умы. В эпоху Возрождения и даже в течение последующих столетий часы рассматривали как модель вселенной. Это оказало существенное влияние на развитие механистической концепции мира.

От машин путь вел к теоретической механике и к научному изучению движения и изменения вообще. Античность уже дала трактаты по статике, и исследования по теоретической механике нового времени, естественно, опирались на статику классических авторов. Задолго до изобретения книгопечатания появлялись книги о машинах, сначала эмпирические описания (Киезер (Kyeser), начало пятнадцатого века), затем более теоретические, как книга Леона Баттисты Альберти об архитектуре (ок. 1450 г.) и рукописи Леонардо да Винчи (ок. 1500 г.). В рукописях Леонардо в зародыше содержалась вполне механистическая теория природы. Тарталья в своей «Новой науке» (1537 г.) рассматривал конструкцию часов и траектории снарядов, но он еще не обнаружил параболической орбиты, впервые открытой Галилеем. Опубликование латинских изданий Герона и Архимеда способствовало такого рода исследованиям. Особое значение имело издание Архимеда, выполненное Ф. Коммандино, которое появилось в 1558 г. и сделало доступным математиком античный интеграционный метод. Сам Коммандино применил эти методы для вычисления центров тяжести (1565 г.), хотя с меньшей, строгостью, чем его учитель.

Вычисление центров тяжести стало любимым предметом у изучавших Архимеда, так как они старались применить статику, чтобы овладеть методами, в которых мы сейчас узнаем зародыши анализа.

Среди последователей Архимеда выдающееся место занимают Симон Стевин, который написал работы о центpax тяжести и по гидравлике (1586 r.), Лука Валерио, давший работы о центрах тяжести (1604 г.) и о квадратуре параболы (1606 г.), и Пауль Гульдин, в сочинении которого «Центробарика» (1641 г.) мы находим так называемую теорему Гульдина о телах вращения, которую в свое время разъяснял Папп. Вслед за этими пионерами появились великие творения Кеплера, Кавальери и Торричелли, развивавшие те методы, которые в конечном счете привели к созданию анализа.

2. Для этих авторов типичной была их склонность пренебрегать архимедовой строгостью ради соображений, которые часто исходили из нестрогих, иной раз атомистических допущений. Вероятно, они не знали, что Архимед в своем письме к Эратосфену тоже пользовался такими методами благодаря их эвристической ценности. Вызвано это было отчасти неудовлетворенностью схоластикой некоторых, хотя и не всех авторов; среди этих пионеров были католические священники, натренированные в схоластических тонкостях. Основной причиной было стремление получать результаты, чего при греческом методе нельзя было быстро добиться.

Революция в астрономии, связанная с именами Коперника, Тихо Браге и Кеплера, позволила совершенно по новому взглянуть на место человека во вселенной и на возможности человека рациональным образом объяснить астрономические явления. То, что небесная механика давала возможность пополнить земную механику, придавало смелости людям науки. Стимулирующее влияние новой астрономии в проблемах, связанных с большими вычислениями, а также с инфинитёзимальными соображениями, особенно хорошо видно в трудах Иоганна Кеплера. Кеплер даже отважился на вычисление объемов ради самого этого вычисления, а в своей «Стереометрии винных бочек» (1615 г.) он вычислял объемы тел, получающихся при вращении конических сечений вокруг оси, лежащей с ними в одной плоскости. Кеплер отказался от архимедовой строгости; у него площадь круга состоит из бесконечно большого числа треугольников с общей вершиной в центре, а его сфера состоит из бесконечно большого числа утончающихся пирамид. Кеплер говорил о доказательствах Архимеда, что они абсолютно строги, «абсолютны и во всех отношениях совершенны», но он оставлял их для людей, склонных увлекаться точными доказательствами. Каждый последующий автор был волен ввести строгость на свой лад или пренебречь ею.

Галилео Галилей дал нам новую механику свободно падающих тел, был основателем теории упругости и вдохновенным защитником системы Коперника. Но, прежде всего, мы обязаны Галилею, более чем какому-либо другому деятелю этого периода, духом современной науки, основанной на гармонии эксперимента и теории. В своих «Беседах» (1638 г.) Галилей пришел к математическому изучению движения, к зависимости между расстоянием, скоростью и ускорением. Он ни разу не изложил систематически свои идеи относительно анализа, предоставив это своим ученикам Торричелли и Кавальери. А идеи Галилея в вопросах чистой математики были весьма оригинальны, как видно из его замечания, что «число квадратов не меньше, чем множество всех чисел, и последнее не больше, чем первое». Такая защита актуально бесконечного (со стороны Сальвиати в «Беседах») сознательно направлена против учения Аристотеля и схоластов (которое представляет Симпличо). «Беседы» содержат также параболическую орбиту снаряда, таблицы для высоты и дальности в зависимости от угла возвышения и заданной начальной скорости. Сальвиати указывает, что цепная линия сходна с параболой, но не дает точного описания этой кривой.

Наступило время для первого систематического изложения результатов, достигнутых в той области, которую мы сейчас называем анализом. Такое изложение было дано в «Геометрии» Бонавентуры Кавальери (1635 г.), профессора Болонского университета. Кавальери построил упрощенную разновидность исчисления бесконечно малых, основанную на схоластическом представлении о неделимых, так, что точка порождает при движении линию, а линия – плоскость. Таким образом, у Кавальери не было бесконечно малых или атомов. Он получал свои результаты с помощью «принципа Кавальери», согласно которому два тела одинаковой высоты имеют один и тот же объем, если плоские сечения этих тел на одинаковом уровне имеют одинаковые площади. Это позволило ему выполнить вычисление, равносильное интегрированию многочленов.

Сначала, чтобы получить площадь, он складывал отрезки, но когда Торричелли показал, что таким способом можно доказать, что любой треугольник делится высотой на две равновеликие части, Кавальери заменил «отрезки» «нитями», то есть он превратил отрезки в площади весьма малой ширины.

3. Это постепенное развитие анализа получило мощный импульс, когда была опубликована «Геометрия» (1637 г.) Декарта, которая включила в алгебру всю область классической геометрии. Эта книга первоначально была опубликована в качестве приложения к «Рассуждению о методе», рассуждению, в котором автор излагает свой рационалистический подход к изучению природы. Рене Декарт был родом из Турени (Франция), вел жизнь дворянина, некоторое время служил в армии Морица Оранского, в течение многих лет жил в Голландии и умер в Стокгольме, куда он был приглашен шведской королевой. Вместе со многими другими великими мыслителями семнадцатого века Декарт искал общий метод мышления, который бы позволял быстрее делать изобретения и выявлять истину в науке. Так как единственной наукой о природе, обладавшей в известной мере систематическим строением, была тогда механика, а ключ к пониманию механики давала математика, то математика стала наиболее важным средством для понимания вселенной. Более того, математика со своими убедительными утверждениями сама была блестящим примером того, что в науке можно найти истину. Таким образом, механистическая философия этого периода приводила к выводу, сходному с тем, к которому пришли платоники, но исходя из других соображений. И платоники, верившие в авторитет, и картезианцы, верившие в разум, считали математику царицей наук.

Декарт опубликовал свою «Геометрию» в качестве применения своего общего метода объединения, в данном случае объединения алгебры и геометрии. Согласно общепринятой точке зрения заслуга книги Декарта состоит главным образом в создании так называемой аналитической геометрии. Верно то, что эта ветвь математики развивалась под влиянием книги Декарта, но «Геометрия» сама по себе вряд ли может рассматриваться как первый трактат по этому предмету. Там нет «декартовых осей», там не выведены уравнения прямой линии и конических сечений, хотя одно частное уравнение второго порядка истолковывается как определяющее собой коническое сечение. Более того, значительная часть книги представляет собой теорию алгебраических уравнений, там содержится «правило Декарта» для определения числа положительных и отрицательных корней.

Нам следует иметь в виду, что Аполлоний определил конические сечения с помощью того, что мы сейчас следуя Лейбницу, называем координатами, хотя числовых значений они не имели. Широта и долгота в «Географии» Птолемея были уже числовыми координатами. Папп в свое «Собрание» включил «Сокровищницу анализа» (Analyomenos), где нам надо только модернизировать обозначения, чтобы получить последовательное применение алгебры к геометрии. Даже графическое представление встречается до Декарта (Орезм). Заслуга Декарта прежде всего состоит в том, что он последовательно применил хорошо развитую алгебру начала семнадцатого века к геометрическому анализу древних и таким образом в огромной мере расширил область ее применимости. Затем заслугой Декарта является то, что он окончательно отбросил ограничение однородности его предшественников, что было недостатком и «видовой логистики» у Виета. Теперь  рассматривались как отрезки. Алгебраическое уравнение стало соотношением между числами – новый шаг вперед по пути математической абстракции, необходимый для общей трактовки алгебраических кривых, и это можно рассматривать как окончательное принятие Западом алгоритмической алгебраической традиции Востока.

В обозначениях Декарта многое уже является современным: мы находим в его книге выражения вида

,

которые отличаются от наших собственно только тем, что Декарт еще пишет  вместо  (что мы еще встречаем даже у Гаусса), хотя он пишет  вместо ,  вместо  и т. д. В его книге разобраться нетрудно, но не следует там искать нашей современной аналитической геометрии.

Несколько ближе к такой аналитической геометрии подошел Пьер Ферма, юрист из Тулузы, который написал небольшую работу по геометрии, вероятно, до издания книги Декарта, но эта работа была опубликована только в 1679 г. Во «Введении» (Isagoge) Ферма мы находим уравнения

для прямых линий и конических сечений относительно некоторой системы (обычно перпендикулярных) осей. Впрочем, эта работа выглядит более архаичной, чем «Геометрия» Декарта, так как она написана в обозначениях Виета, а к тому времени, когда было напечатано «Введение» Ферма, уже появились другие работы, в которых алгебра была применена к результатам Аполлония, – прежде всего «Трактат о конических сечениях» (Tractatus de Sectionibus conicis, 1655 г.) Джона Валлиса и, частично, «Основы кривых линий» (Elementa curvarum linearum, 1659 г.), написанные Иоганном де Виттом, великим пенсионарием Голландии. Оба труда создавались под прямым влиянием Декарта. Однако прогресс шел очень медленно, и даже в книге Лопиталя «Аналитический трактат о конических сечениях» (Traite analytique des Sections coniques, 1707 г.) мы находим немногим больше, чем перевод Аполлония на язык алгебры. Все эти авторы не решались допускать отрицательные значения для координат. Первым, кто смело обращался с алгебраическими уравнениями, был Ньютон в своем исследовании кривых третьего порядка (1703 г.), а первую аналитическую геометрию конических сечений, вполне освободившуюся от Аполлония, мы находим только во «Введении» Эйлера (1748 г.).

4. Появление книги Кавальери побудило многих математиков различных стран заняться задачами, в которых применялись бесконечно малые. К основным проблемам стали подходить более абстрактным образом и при таком подходе выигрывали в общности. Задача о касательных, состоявшая в отыскании метода для проведения касательной к заданной кривой в заданной точке, все более и более выдвигалась на первый план наряду со старыми проблемами определения объемов и центров тяжести. В этой задаче выявились два направления, геометрическое и алгебраическое. Последователи Кавальери, особенно Торричелли и Исаак Барроу, пользовались греческим методом геометрического рассуждения, не слишком заботясь о его строгости. Христиан Гюйгенс тоже явным образом тяготел к греческой геометрии. Но были другие, в частности Ферма, Декарт и Джон Валлис, у которых проявлялась противоположная тенденция – они применяли новую алгебру. Практически все авторы, писавшие в 1630–1660 гг., ограничивались вопросами, касавшимися алгебраических кривых, в частности кривых с уравнением . Они находили, каждый своим способом, формулы, равносильные формуле , сначала для целого положительного , затем для целого отрицательного  и дробного. Иной раз появлялась неалгебраическая кривая такая, как циклоида (рулетта), исследованная Декартом и Блезом Паскалем. «Общий трактат о рулетте» (Traite general de la roulette, 1658 г.) Паскаля (часть небольшой книги, опубликованной под именем А. Деттонвиля) оказал большое влияние на молодого Лейбница.

В этот период начали обозначаться некоторые характерные черты анализа. В 1638 г. Ферма открыл метод нахождения максимумов и минимумов с помощью незначительного изменения переменного в простом алгебраическом уравнении с последующим обращением этого изменения в нуль. Этот метод был перенесен на более общие алгебраические кривые Иоганном Гудде, бургомистром Амстердама, в 1658 г. Проводили касательные, вычисляли объемы и центры тяжести, но по-настоящему еще не уловили связи между интегрированием и дифференцированием как обратными операциями, пока это не было показано (1670 г.) Барроу, но в тяжеловесной геометрической форме. Паскаль при случае пользовался выражениями, куда входили малые количества и в которых он опускал члены более высокого порядка малости, предвосхищая спорное допущение Ньютона, что . Паскаль защищал свой прием, ссылаясь на интуицию больше, чем на логику, чем предвосхитил критику Ньютона со стороны епископа Беркли.

При этих поисках нового метода схоластические представления применялись не только Кавальери, но и в трудах бельгийского иезуита Григория Сен Венсана и его учеников и помощников Пауля Гульдина и Андре Такке. Эти люди вдохновлялись и духом своей эпохи, и средневековыми схоластическими писаниями о природе континуума и о протяженности форм. В их работах впервые появляется термин «исчерпывание» для обозначения метода Архимеда. Книга Такке «О цилиндрах и кольцах» (1651 г.) оказала влияние на Паскаля.

В эпоху, когда не существовало научных журналов, такая лихорадочная активность математиков находила свое выражение в оживленной переписке ученых и в деятельности дискуссионных кружков. Основной заслугой иных ученых было то, что они являлись как бы центрами научных связей. Более всего известен в этом отношении Марен Мерсенн, чье имя как математика сохранилось в термине «числа Мерсенна». В переписке с ним состояли Декарт, Ферма, Дезарг, Паскаль и многие другие ученые. Из дискуссионных кружков ученых вырастали академии. Они возникали в некотором роде как оппозиция университетам. Университеты развивались в период схоластики (за некоторыми исключениями, как Лейденский университет) и оставались покровителями средневекового подхода, требовавшего изложения науки в застывших формах. Новые академии, напротив, были проникнуты новым духом исследований. Они типичны «для этого времени, опьяненного обилием новых знаний, занятого искоренением изживших себя суеверий, порывающего с традициями прошлого, лелеющего самые неумеренные надежды на будущее. Тогда отдельный ученый научился быть довольным и гордым тем, что он добавил бесконечно малую частицу к общей сумме знаний; короче говоря, тогда возник современный ученый». Первая академия была основана в Неаполе (1560 г.), за ней последовала Accademia dei Lincei («Академия рысьих») в Риме (1603 г.). Лондонское королевское общество существует с 1662 г., Французская академия – с 1666 г. Валлис был членом-учредителем королевского общества; в первом составе членов Французской академии был Гюйгенс.

5. Наряду с книгой Кавальери одним из наиболее важных произведений этого «периода предтеч» была «Арифметика бесконечных» (Arithmetica infinitorum, 1655 г.) Валлиса. Ее автор с 1643 г. до своей смерти в 1703 г. был профессором геометрии в Оксфорде. Уже название книги показывает, что Валлис хотел пойти дальше, чем Кавальери с его «Геометрией неделимых»: Валлис хотел применить не геометрию древних, а новую «арифметику» (алгебру). Валлис был первым математиком, у которого алгебра по настоящему переросла в анализ. Методы обращения с бесконечными процессами, которыми пользовался Валлис, часто были примитивны, но он получал новые результаты: он вводил бесконечные ряды и бесконечные произведения и весьма смело обращался с мнимыми выражениями, с отрицательными и дробными показателями.

Он писал  вместо  (и утверждал, что ). Характерным для него результатом является разложение

.

Валлис был только одним из целого ряда блестящих представителей этого периода, обогащавших математику одним открытием за другим. Движущей силой в этом расцвете творческой науки, не имевшем себе равного со времен величия Греции, было не только то, что новой техникой можно было легко пользоваться. Многие крупные мыслители искали большего – «общего метода», который иной раз понимали в ограниченном смысле, как метод математики, иной раз понимали шире – как метод познания природы и создания новых изобретений. Это было причиной того, что в рассматриваемую эпоху все выдающиеся философы были математиками и все выдающиеся математики были философами. В поисках новых изобретений иногда непосредственно приходили к математическим открытиям. Знаменитым примером является работа «Маятниковые часы» (Horologium Oscillatorium, 1673 г.) Христиана Гюйгенса. В ней в поисках лучшего способа, измерения времени рассмотрены не только маятниковые часы, но изучаются также эволюты и эвольвенты плоской кривой.

Гюйгенс был голландцем, человеком зажиточным и в течение ряда лет жил в Париже. Он был столь же выдающимся физиком, как и астрономом, создал волновую теорию света и выяснил, что у Сатурна есть кольцо. Его книга о маятниковых часах оказала влияние на Ньютона. Для периода до Ньютона и Лейбница наряду с «Арифметикой» Валлиса эта книга представляет анализ в его наиболее развитой форме. Письма и книги Валлиса и Гюйгенса изобилуют новыми открытиями: спрямлениями кривых, квадратурами, построением обверток. Гюйгенс исследовал трактрису, логарифмическую кривую, цепную линию и установил, что циклоида – таутохронная кривая. Несмотря на это обилие результатов, многие из которых были получены уже после того, как Лейбниц опубликовал свое исчисление, Гюйгенс целиком принадлежит к периоду предтеч. Он признавался Лейбницу, что никогда не был в состоянии освоиться с его методом. Подобно этому Валлис никогда не чувствовал себя в своей тарелке, пользуясь обозначениями Ньютона. Надо сказать еще, что Гюйгенс был одним из немногих среди больших математиков семнадцатого века, кто заботился о строгости: его методы всегда были вполне архимедовыми.

6. Работы математиков этого периода охватывали много областей, новых и старых. Они обогатили оригинальными результатами классические разделы, пролили новый свет на прежние области и создавали даже совершенно новые области математических исследований. Примером первого рода может служить то, как Ферма изучал Диофанта. Примером второго рода является новая интерпретация геометрии Дезарга. Вполне новым творением была математическая теория вероятностей.

Диофант стал доступным для читающих на латинском языке в 1621 г. В своем экземпляре этого перевода Ферма сделал свои знаменитые заметки на полях (опубликованы сыном Ферма в 1670 г.). Среди них мы находим «великую» теорему Ферма о том, что уравнение  невозможно при целых положительных значениях , если , – в 1847 г. это привело Куммера к его теории идеальных чисел. Доказательства, пригодного для всех , до сих пор нет, хотя теорема несомненно верна для большого числа значений .

Ферма написал на полях против 8-й задачи II книги Диофанта «Разделить квадратное число на два других квадратных числа» следующие слова: «Разделить куб на два других куба, четвертую степень или вообще какую-либо степень выше второй на две степени с тем же обозначением невозможно, и я нашел воистину замечательное доказательство этого, однако поля слишком узки, чтобы поместить его». Если Ферма имел такое замечательное доказательство, то за последующие три столетия напряженных исследований такое доказательство не удалось получить. Надежнее допустить, что даже великий Ферма иногда ошибался.

В другой заметке на полях Ферма утверждает, что простое число вида  может быть одним и только одним образом представлено как сумма двух квадратов. Эту теорему позже доказал Эйлер. Еще одна «теорема Ферма», которая утверждает, что  делится на , когда  – простое число и  не делится на , высказана в письме от 1640 г.; эту теорему можно доказать элементарными средствами. Ферма был также первым, кто утверждал, что уравнение  ( – целое и не квадрат) имеет сколько угодно целых решений.

Ферма и Паскаль стали основателями математической теории вероятностей. Постепенное формирование интереса к задачам, связанным с вероятностями, происходило прежде всего под влиянием развития страхового дела, но те частные вопросы, которые побудили больших математиков поразмыслить над этим предметом, были поставлены в связи с играми в кости и в карты. Как выразился Пуассон, «задача, относившаяся к азартным играм и поставленная перед суровым янсенистом светским человеком, была источником теории вероятностей». Этим светским человеком был кавалер де Мере, который обратился к Паскалю с вопросом по поводу так называемой «задачи об очках». Паскаль завязал переписку с Ферма по поводу этой задачи и родственных вопросов, и они вдвоем установили некоторые из основных положений теории вероятностей (1654 г.). Когда Гюйгенс приехал в Париж, он узнал об этой переписке и попытался дать свое собственное решение, в результате чего появилась его книга «О расчетах при азартных играх» (De ratiociniis in ludo aleae, 1657 г.), первый трактат по теории вероятностей. Следующие шаги были сделаны де Виттом и Галлеем, которые составили таблицы смертности (1671, 1693 гг.).

Блез Паскаль был сыном Этьена Паскаля, корреспондента Мерсенна; кривая «улитка Паскаля» названа в честь Этьена. Блез быстро развивался под присмотром своего отца, и уже в шестнадцатилетнем возрасте он открыл «теорему Паскаля» о шестиугольнике, вписанном в коническое сечение. Эта теорема была опубликована в 1641 г. на одном листе бумаги и повлияла на Дезарга. Через несколько лет Паскаль изобрел счетную машину. Когда ему было двадцать пять лет, он решил поселиться как янсенист в монастыре Лор-Рояль и вести жизнь аскета, но продолжал при этом уделять время науке и литературе. Его трактат об «арифметическом треугольнике», образованном биномиальными коэффициентами и имеющем применение в теории вероятностей, появился посмертно в 1664 г. Мы уже упоминали о его работах по интегрированию и о его идеях относительно бесконечного и бесконечно малого, которые оказали влияние на Лейбница. Паскаль первый придал удовлетворительную форму принципу полной индукции.

Жерар Дезарг был архитектором в Лионе. Он автор книги о перспективе (1636 г.). Его брошюра с любопытным названием «Первоначальный набросок попытки разобраться в том, что получается при встрече конуса с плоскостью» (1639 г.) содержит некоторые из основных понятий синтетической геометрии такие, как точки на бесконечности, инволюции, полярные соотношения, – все это на курьезном ботаническом языке. Свою «теорему Дезарга» о перспективном отображении треугольников он обнародовал в 1648 г. Плодотворность этих идей в полной мере раскрылась лишь в девятнадцатом столетии.

7. Общий метод дифференцирования и интегрирования, построенный с полным пониманием того, что один процесс является обратным по отношению к другому, мог быть открыт только такими людьми, которые овладели как геометрическим методом греков и Кавальери, так и алгебраическим методом Декарта и Валлиса. Такие люди могли появиться лишь после 1660 г., и они действительно появились в лице Ньютона и Лейбница. Очень много написано по вопросу о приоритете этого открытия, но теперь установлено, что оба они открыли свои методы независимо друг от друга. Ньютон первым открыл анализ (в 1665–1666 гг.), Лейбниц в 1673–1678 гг., но Лейбниц первый выступил с этим в печати (Лейбниц в 1684–1686 гг., Ньютон в 1704–1736 гг. (посмертно)). Школа Лейбница была гораздо более блестящей, чем школа Ньютона.

Исаак Ньютон был сыном землевладельца в Линкольншире. Он учился в Кембридже, возможно, что у Исаака Барроу, который в 1669 г. передал, ему свою профессорскую кафедру (примечательное явление в академической жизни), так как Барроу открыто признал превосходство Ньютона. Ньютон оставался в Кембридже до 1696 г., когда он занял пост инспектора, а позже начальника монетного двора. Его исключительный авторитет в первую очередь основан на его «Математических принципах натуральной философии» (Philosophiae naturalis principia ma-thematica, 1687 г.), огромном томе, содержащем аксиоматическое построение механики и закон тяготения – закон, управляющий падением яблока на землю и движением Луны вокруг Земли. Ньютон строго математически вывел эмпирически установленные законы Кеплера движения планет из закона тяготения обратно пропорционально квадрату расстояния и дал динамическое объяснение приливов и многих явлений при движении небесных тел. Он решил задачу двух тел для сфер и заложил основы теории движения Луны. Решив задачу о притяжении сфер, он тем самым заложил основы и теории потенциала. Его аксиоматическая трактовка требовала абсолютности пространства и абсолютности времени, Трудно разглядеть за геометрической формой его доказательств, что их автор полностью владел анализом, который он называл теорией флюксий. Ньютон открыл свой общий метод в течение 1665–1666 гг., когда он находился на своей родине, в деревне, спасаясь от чумы, поразившей Кембридж. К этому времени относятся его основные идеи о всемирном тяготении, а также о сложном составе света. «В истории науки нет равного примера таких достижений, как достижения Ньютона в течение этих двух золотых лет», – заметил профессор Мор.

Открытие Ньютоном флюксий стоит в тесной связи с его изучением бесконечных рядов по «Арифметике» Валлиса. При этом Ньютон обобщил биномиальную теорему на случаи дробных и отрицательных показателей и таким образом открыл биномиальный ряд. Это в свою очередь значительно облегчило ему распространение его теории флюксий на «все» функции, будь они алгебраическими или трансцендентными. «Флюксия», которая обозначалась точкой, помещенной над буквой, была конечной величиной, скоростью, а буквы без точки обозначали «флюэнты». Мы приведем здесь пример того, как Ньютон разъяснял свой метод (из «Метода флюксий», 1736 г.). Переменные, являющиеся флюэнтами, обозначены через , «а скорости, с которыми каждая флюэнта увеличивается в силу порождающего движения (которые я могу назвать флюксиями или попросту скоростями или быстростями), я буду изображать теми же буквами с точкой, а именно ». Бесконечно малые у Ньютона именуются «моментами флюксий» и обозначаются через , где  – «бесконечно малое количество». Ньютон продолжает:

«Итак, пусть дано уравнение , подставим  вместо вместо , тогда мы получим

Но согласно допущению , и, после исключения этого уравнения и деления остающихся членов на , у нас останется

.

Но поскольку нуль мы считаем бесконечно малым, так что он может представлять моменты количеств, то члены, которые умножены на него, суть ничто по сравнению с остальными; поэтому я отбрасываю их, и у нас остается ».

Этот пример показывает, что Ньютон первоначально считал свои производные скоростями, но он показывает также, что способ выражения Ньютона не был вполне определенным. Являются ли символы «» нулями? или бесконечно малыми? или это конечные числа? Ньютон пытался разъяснить свою точку зрения, с помощью теории «первых и последних отношений», которую он ввел в своих «Началах» и которая включала в себя понятие предела, но в таком виде, что применять его было трудно.

«Эти последние отношения исчезающих количеств не являются в точности отношениями последних количеств, а пределами, к которым постоянно приближаются отношения беспредельно убывающих количеств и к которым они приближаются более чем на любую заданную разность, но никогда не переходят через них и в действительности не достигают их ранее, чем эти количества не уменьшатся до бесконечности» («Начала», книга I, отдел I, последняя схолия).

«Количества, а также отношения количеств, которые в продолжение любого конечного времени постоянно приближаются к равенству и до истечения этого времени подходят одно к другому ближе, чем на любую заданную разность, становятся в конце концов равными» («Начала», книга I, отдел I, лемма I).

Это далеко не ясно, трудности, связанные с пониманием ньютоновой теории флюксий, повлекли за собой много недоразумений и вызвали суровую критику епископа Беркли в 1734 г. Эти недоразумения были устранены лишь после четкого установления современного понятия предела.

Ньютон писал также о конических сечениях и о плоских кривых третьего порядка. В «Перечислении линий третьего порядка» (Enumeratio linearum tertii' ordinis, 1704 г.) он дал классификацию плоских кривых третьей степени на 72 вида, исходя из своей теоремы о том, что каждую кубическую кривую можно получить из «расходящейся параболы»  при центральном проектировании одной плоскости на другую. Это было первым важным новым результатом, полученным путем применения алгебры к геометрии, так как все предыдущие работы были просто переводом Аполлония на алгебраический язык. Ньютону принадлежит также метод получения приближенных значений корней численных уравнений, который он разъяснил на примере уравнения

,

получив .

Трудно оценить влияние Ньютона на его современников из-за того, что он постоянно колебался, публиковать ли ему свои открытия. Впервые он проверил закон всемирного тяготения в 1665–1666 гг., но сообщил об этом лишь тогда, когда представил в рукописи большую часть своих «Начал» (1686 г.). Его «Всеобщая арифметика» (Arithmetiea universalis), составленная из лекций по алгебре, прочитанных между 1673 и 1683 гг., была напечатана в 1707 г. Его работа о рядах, восходящая к 1669 г., была предметом письма к Ольденбургу в 1676 г., а появилась в печати в 1711 г. Его работа о квадратуре кривых (1671 г.) была напечатана только в 1704 г., и тогда впервые миру стала известна теория флюксий. «Метод флюксий» появился только после смерти Ньютона, в 1736 г.

8. Готфрид Вильгельм Лейбниц родился в Лейпциге, а большую часть жизни провел при ганноверской дворе, на службе у герцогов, один из которых стал английским королем под именем Георга I. Лейбниц был еще более правоверным христианином, чем другие мыслители его столетия. Кроме философии, он занимался историей, теологией, лингвистикой, биологией, геологией, математикой, дипломатией и «искусством изобретения». Одним из первых после Паскаля он изобрел счетную машину, пришел к идее парового двигателя, интересовался китайской философией и старался содействовать объединению Германии. Основной движущей дружиной его жизни были поиски всеобщего метода для овладения наукой, создания изобретений и понимания сущности единства вселенной. «Общая наука» (Scientia universalis), которую он пытался построить, имела много аспектов, и некоторые из них привели Лейбница к математическим открытиям. Его поиски «всеобщей характеристики» привели его к занятиям перестановками, сочетаниями и к символической логике; поиски «всеобщего языка», в котором все ошибки мысли выявлялись бы как ошибки вычислений, привели его не только к символической логике, но и к многим новшествам в математических обозначениях. Лейбниц – один из самых плодовитых изобретателей математических символов. Немногие так хорошо понимали единство формы и содержания. На этом философском фоне можно понять, как он изобрел анализ: это было результатом его поисков «универсального языка», в частности языка, выражающего изменение и движение.

Лейбниц нашел свое новое исчисление между 1673 и 1676 гг. под личным влиянием Гюйгенса и в ходе изучения Декарта и Паскаля. Его подстегивало то, что он знал, что Ньютон обладал подобным методом. Подход Ньютона был в основном кинематическим; подход Лейбница был геометрическим: он мыслил в терминах «характеристического треугольника» (), который уже появлялся в нескольких других работах, а именно у Паскаля и в «Геометрических лекциях» (Geometrical Lectures, 1670 г.) Барроу. Впервые анализ в форме Лейбница был изложен им в печати в 1684 г. в шестистраничной статье в Acta Eruditorum, математическом журнале, который был основан при его содействии в 1682 г.

Характерно название этой статьи: «Новый метод для максимумов и минимумов, а также для касательных, для которого не являются препятствием дробные и иррациональные количества, и особый вид исчисления для этого». Изложение было трудным и неясным, но статья содержала наши символы  и правила дифференцирования, включая  и дифференцирование дроби, а также условие  для экстремальных значений и  для точек перегиба. За этой статьей последовала в 1686 г. другая статья с правилами интегрального исчисления и с символом  (она была написана в форме рецензии). Уравнение циклоиды было дано в виде

.

С появлением этих статей начался исключительно плодотворный период математической деятельности. После 1637 г. к Лейбницу присоединились братья Бернулли, которые с жадностью осваивали его методы. Еще до 1700 г. они втроем открыли значительную часть нашего основного курса анализа и несколько важных разделов в более сложных областях, включая решение некоторых задач вариационного исчисления. В 1696 г. появился первый учебник по анализу. Он был написан маркизом Лопиталем, учеником Иоганна Бернулли, опубликовавшим лекции своего учителя по дифференциальному исчислению в книге «Анализ бесконечно малых» (Analyse des infiniment petits). В этой книге мы находим, так называемое «правило Лопиталя» для нахождения предельного значения дроби, оба члена которой стремятся к нулю.

Нашими обозначениями в анализе мы обязаны Лейбницу, ему принадлежат и названия «дифференциальное исчисление» и «интегральное исчисление». Благодаря его влиянию стали пользоваться знаком «» для равенства и знаком «» для умножения. Лейбницу принадлежат термины «функция» и «координаты», а также забавный термин «оскулирующий» (целующий). Ряды

носят имя Лейбница, хотя не он первый их открыл. (По видимому, это сделал Джеймс Грегори, шотландский математик, который пытался также доказать невозможность квадратуры круга с помощью циркуля и линейки.)

Разъяснения Лейбница относительно оснований анализа страдали той же неопределенностью, как и разъяснения Ньютона. Иногда его  были конечными величинами, иногда же величинами меньше любого определенного количества и все-таки не нули. Не имея строгих определений, он прибегал к аналогиям, скажем, с соотношением между радиусом Земли и расстоянием до неподвижных звезд. В вопросах, касающихся бесконечного, он менял свою точку зрения; в одном из своих писем (к Фуше, 1693 г.) он принимал существование актуальной бесконечности, чтобы преодолеть трудности, указанные Зеноном, и хвалил Григория де Сен Венсана, который вычислил то место, где Ахиллес нагонит черепаху. Неясности у Ньютона вызвали критику Беркли, неясности у Лейбница вызвали выступление Бернарда Ньювентейта, бургомистра небольшого города вблизи Амстердама (1694 г.). Как критика Беркли, так и критика Ньювентейта имела свои основания, но и та и другая были целиком негативны. Их авторы не были в состоянии строго обосновать анализ, но все-таки такая критика побудила к дальнейшей конструктивной работе. Это особенно относится к остроумным замечаниям Беркли.

Восемнадцатое столетие

1. В восемнадцатом веке деятельность математиков сосредоточивалась в области анализа и его приложений к механике. Самые крупные фигуры можно расположить как бы в виде генеалогического древа, указывающего на их интеллектуальное родство:

Лейбниц (1646–1716)

Братья Бернулли: Якоб (1654–1705), Иоганн (1667-1748)

Эйлер (1707-1783)

Лагранж (1736-1813)

Лаплас (1749-1827)

С трудами этих ученых тесно связана деятельность группы французских математиков, прежде всего Клеро, Даламбера и Мопертюи, которые в свою очередь были связаны с философами эпохи Просвещения. К ним надо добавить швейцарских математиков Ламберта и Даниила Бернулли. Научная деятельность в основном была сосредоточена в академиях, среди которых выдающееся место занимали Парижская, Берлинская и Петербургская. Преподавание в университетах имело меньшее значение, а то и никакого. Это был период, когда некоторые из ведущих европейских стран управлялись теми, кого, смягчая выражения, называют просвещенными деспотами: это Фридрих II, Екатерина II, пожалуй, и Людовики XV и XVI. Притязания этих деспотов на славу частично основаны на том, что они любили окружать себя учеными людьми. Такая любовь была чем-то вроде интеллектуального снобизма, но он умерялся в известной мере пониманием значения естествознания и прикладной математики в деле улучшения мануфактур и повышения боеспособности вооруженных сил. Например, говорят, что отличные качества французского флота связаны с тем, что при конструировании фрегатов и линейных кораблей кораблестроители частично основывались на математической теории. Работы Эйлера изобилуют применениями к вопросам, имеющим значение для армии и флота. Астрономия продолжала играть свою выдающуюся роль в качестве приемной матери математических исследований, пользуясь покровительством королей и императоров.

2. В Швейцарии Базель, свободный имперский город с 1263 г., уже долгое время был средоточием науки. Еще во времена Эразма его университет был важным центром. Науки и искусства процветали в Базеле, как и в голландских городах, под управлением купеческого патрициата. К этому базельскому патрициату принадлежала купеческая семья Бернулли, которая в предыдущем столетии переехала туда из Антверпена, когда этот город был захвачен испанцами. С конца семнадцатого столетия до настоящего времени эта семья в каждом поколении давала ученых. Воистину во всей истории науки трудно найти семью, поставившую более внушительный рекорд.

Родоначальниками этой династии были два математика, Якоб и Иоганн Бернулли. Якоб изучал теологию, Иоганн изучал медицину, но когда в лейпцигских Acta Eruditorum появились статьи Лейбница, оба они решили стать математиками. Они стали первыми выдающимися учениками Лейбница. В 1687 г. Якоб занял кафедру математики в Базельском университете, где он преподавал до своей смерти в 1705 г. Иоганн в 1697 г. стал профессором в Гронингене (Голландия), а после смерти брата перешел на его кафедру в Базеле, где преподавал сорок три года. Якоб начал переписываться с Лейбницем в 1687 г. Затем, постоянно обмениваясь мыслями с Лейбницем и между собой, не раз вступая в ожесточенное соперничество друг с другом, оба брата начали открывать те сокровища, которые содержались в путепролагающем достижении Лейбница. Список их результатов длинен и содержит не только многое из того, что сейчас входит в наши элементарные учебники дифференциального и интегрального исчисления, но и интегрирование ряда обыкновенных дифференциальных уравнений. Якобу принадлежит применение полярных координат, исследование цепной линии (уже рассмотренной Гюйгенсом и другими), лемнискаты (1694 г.) и логарифмической спирали. В 1690 г. он нашел так называемую изохрону, которую Лейбниц в 1687 г. определил как кривую, вдоль которой тело падает с постоянной скоростью, – оказалось, что это полукубическая парабола. Якоб также исследовал изопериметрические фигуры (1701 г.), что привело его к задаче из вариационного исчисления. Логарифмическая спираль, которая обладает свойством воспроизводиться при различных преобразованиях (ее эволюта – тоже логарифмическая спираль, и они обе по отношению к полюсу являются подошвенной кривой и каустикой), настолько обрадовала Якоба, что он пожелал, чтобы эту кривую вырезали на его могильном камне с надписью: eadem mutata resurgo (изменившись, возникаю такой же).

Якоб Бернулли был также одним из первых исследователей в теории вероятностей, и по этому предмету он написал «Искусство предположения» (Ars conjectandi) – книгу, опубликованную посмертно, в 1713 г. В ее первой части перепечатан трактат Гюйгенса об азартных играх, в остальных частях рассматриваются перестановки и сочетания, а главным, результатом является «теорема Бернулли» о биномиальных распределениях. При рассмотрении треугольника Паскаля в этой книге появляются «числа Бернулли».

3. Работы Иоганна Бернулли тесно связаны с работами его старшего брата, и не всегда легко различить их результаты. Иоганна часто рассматривают как изобретателя вариационного исчисления вследствие его вклада в задачу о брахистохроне. Это – кривая быстрейшего спуска для материальной точки, которая движется в поле тяготения от заданной начальной к заданной конечной точке, кривая, которую исследовали Лейбниц и оба Бернулли в 1697 и в последующие годы. В это время они открыли уравнение геодезических линий на поверхности. Решением задачи о брахистохроне является циклоида. Эта кривая решает также задачу о таутохроне – кривой, вдоль которой материальная точка в гравитационном поле достигает наинизшей точки за время, которое не зависит от исходной точки движения. Гюйгенс открыл это свойство циклоиды и использовал его для построения таутохронных часов с маятником (1673 г.), период колебания которого не зависит от амплитуды.

В числе других Бернулли, повлиявших на развитие математики, есть два сына Иоганна: Николай и, особенно, Даниил. Николай, как и Даниил, был приглашен в Петербург, незадолго до того основанный Петром Великим; там он пробыл недолго. Задача по теории вероятностей, которую он предложил, находясь в этом городе, известна как Петербургская задача (или, более выразительно, Петербургский парадокс). Этот сын Иоганна умер молодым, но другой сын, Даниил, дожил до глубокой старости. До 1777 г. он был профессором Базельского университета. Его плодовитая деятельность посвящена главным образом астрономии, физике и гидродинамике. Его «Гидродинамика» появилась в 1738 г., и одна из теорем этой книги, о гидравлическом давлении, носит его имя. В том же году он заложил основы кинетической теории газов; вместе с Даламбером и Эйлером он изучал теорию колебаний струн. Его отец и дядя развивали теорию обыкновенных дифференциальных уравнений, Даниил же был пионером в области уравнений в частных производных.

4. Из Базеля вышел также самый плодовитый математик восемнадцатого столетия, если только не всех времен, – Леонард Эйлер. Его отец изучал математику под руководством Якоба Бернулли, а Леонард – под руководством Иоганна. Когда в 1725 г. сын Иоганна Николай уехал в Петербург, молодой Эйлер последовал за ним и оставался в Петербургской академии до 1741 г. С 1741 по 1766 г. Эйлер находился в Берлинской академии под особым покровительством Фридриха II, а с 1766 до 1783 г. он снова в Петербурге, теперь уже под эгидой императрицы Екатерины. Он был дважды женат и имел тринадцать детей. Жизнь этого академика восемнадцатого столетия была почти целиком посвящена работе в различных областях чистой и прикладной математики. Хотя он потерял в 1735 г. один глаз, а в 1766 г. – второй, ничто не могло ослабить его огромную продуктивность. Слепой Эйлер, пользуясь своей феноменальной памятью, продолжал диктовать свои открытия. В течение его жизни увидели свет 530 его книг и статей; умирая, он оставил много рукописей, которые Петербургская академия публиковала в течение последующих 47 лет. Это довело число его работ до 771, но Густав Энестрем дополнил этот список до 886.

Эйлеру принадлежат заметные результаты во всех областях математики, существовавших в его время. Он публиковал свои открытия не только в статьях различного объема, но и в многих обширных руководствах, где упорядочен и кодифицирован материал, который собирали поколения. В некоторых областях изложение Эйлера было почти что окончательным. Например, наша нынешняя тригонометрия с ее определением тригонометрических величин как отношений и с принятыми в ней обозначениями восходит к «Введению в анализ бесконечных» (Introductio in analysin infinitorum, 1748 г.) Эйлера. Колоссальный авторитет его руководств привел к упрочению ряда его обозначений в алгебре и в анализе; Лагранж, Лаплас и Гаусс знали Эйлера и следовали за ним во всей своей деятельности.

«Введение» 1748 г. в своих двух томах охватывает немалое разнообразие вопросов. В нем содержится изложение бесконечных рядов, в том числе рядов для  и соотношение  (уже открытое Иоганном Бернулли и другими, в различных видах). Исследование кривых и поверхностей с помощью их уравнений ведется настолько свободно, что мы, можем рассматривать «Введение» как первый учебник аналитической геометрии. Мы находим здесь также алгебраическую теорию исключения. Наиболее увлекательными частями этой книги является глава о функции дзета и об ее связи с теорией простых чисел, равно как и глава о partitio numerorum (разбиении чисел на слагаемые).

Другим большим и богатым по содержанию руководством Эйлера было «Дифференциальное исчисление» (Institutiones calculi differentialis, 1755 г.), за которым последовали три тома «Интегрального исчисления» (Institutiones calculi integralis, 1768–1774 г.). Здесь мы находим не только наше элементарное дифференциальное и интегральное исчисление, но также теорию дифференциальных уравнений, теорему Тейлора со многими приложениями, формулу суммирования Эйлера и эйлеровы интегралы В и Г. Раздел о дифференциальных уравнениях с его разграничением «линейных», «точных» и «однородных» уравнений все еще является образцом для наших элементарных учебников по этому предмету. «Механика, или наука о движении, изложенная аналитически» (1736 г.) Эйлера была первым учебником, в котором ньютоновская динамика материальной точки была развита аналитическими методами. За ней последовала «Теория движения твердых тел» (1765 г.), в которой таким же образом трактуется механика твердых тел. Этот трактат содержит эйлеровы уравнения для тела, вращающегося вокруг точки. «Полное введение в алгебру» (1770 г.), написанное по-немецки и продиктованное слуге, стало образцом для многих позднейших учебников по алгебре. В нем изложение доведено до теории уравнений третьей и четвертой степени.

В 1744 г. появилось сочинение Эйлера «Метод нахождения кривых линий, обладающих свойствами максимума или минимума» (Methodus inveniendi lineas curvas maximi minimivi proprietate gaudentes). Это было первое изложение вариационного исчисления, оно содержало эйлеровы уравнения и многие приложения, включая открытие того, что катеноид и прямой геликоид являются минимальными поверхностями. Многие другие результаты Эйлера вошли в его работы меньшего объема, содержащие немало драгоценностей, ныне мало известных. В числе более известных его открытий теорема, связывающая число вершин (), граней () и ребер () замкнутого многогранника (), эйлерова прямая в треугольнике, кривые постоянной ширины (Эйлер называл их кривыми orbiformi) и эйлерова постоянная

Несколько статей посвящены занимательной математике (семь кёнигебергских мостов, задача о шахматном коне). Одни лишь результаты Эйлера в области теории чисел (к его открытиям в этой области принадлежит закон квадратичной взаимности) дали бы ему место в пантеоне славы. Деятельность Эйлера в значительной мере была посвящена астрономии, причем особое внимание он уделял теории движения Луны, этому важному разделу задачи трех тел. Его «Теория движения планет и комет» (Theoria motus planetarum et cometarum, 1774 г.) является трактатом по небесной механике. С этим трудом Эйлера связаны его исследования о притяжении эллипсоидов (1768 г.).

У Эйлера есть книги по гидравлике, по кораблестроению, по артиллерии. В 1769–1771 гг. появились три тома его «Диоптрики» (Dioptrica) с теорией преломления лучей в системе линз. В 1739 г. появилась его новая теория музыки, о которой говорили, что она слишком музыкальна для математиков и слишком математична для музыкантов. Философское изложение Эйлера наиболее важных проблем естествознания в его «Письмах к одной немецкой принцессе» (написаны в 1760–1761 гг.) остается образцом популяризации.

Огромная продуктивность Эйлера была и остается поводом для изумления и восхищения каждого, кто пытался изучать его труды, – задача не столь трудная, как это кажется, так как латынь Эйлера очень проста и его обозначения почти современны, – пожалуй, было бы лучше сказать, что наши обозначения почти эйлеровы! Можно составить длинный список известных открытий, приоритет в которых принадлежит Эйлеру, и перечень его идей, которые еще заслуживают разработки. Большие математики всегда признавали, что они обязаны Эйлеру многим. «Читайте Эйлера,— обычно говорил молодым математикам Лаплас, – читайте Эйлера, это наш общий учитель». А Гаусс выразился еще более определенно: «Изучение работ Эйлера остается наилучшей школой в различных областях математики, и ничто другое не может это заменить». Риман хорошо знал труды Эйлера, и некоторые из наиболее глубоких его произведений обнаруживают влияние Эйлера. Самым лучшим делом было бы издать переводы некоторых трудов Эйлера с современными комментариями.

5. Поучительно указать не только на то, что Эйлер внес в науку, но и на некоторые его слабости. В восемнадцатом столетии еще достаточно беззаботно обращались с бесконечными процессами и многое в трудах ведущих математиков этого периода производит на нас впечатление безудержного и восторженного экспериментирования. Экспериментировали с бесконечными рядами, с бесконечными произведениями, с интегрированием, с использованием таких символов, как . Если многие из выводов Эйлера можно принять сегодня, то есть другие результаты, относительно которых надо делать оговорки. Например, мы принимаем утверждение Эйлера, что  имеет бесконечно много значений, которые все являются комплексными числами, за исключением того случая, когда , тогда одно из значений действительно. Эйлер пришел к этому выводу в письме к Даламберу (1747 г.), который утверждал, что . Но мы не можем согласиться с Эйлером, когда он пишет, что , или когда он из того, что

и

,

заключает, что

.

Все же нам надо соблюдать осторожность и не критиковать слишком поспешно Эйлера за его обращение с расходящимися рядами: он попросту не всегда пользовался некоторыми из наших нынешних признаков сходимости или расходимости как критериями законности своих рядов. Многое в его считавшихся необоснованных работах о рядах было строго истолковано современными математиками.

Однако мы не можем восторгаться тем способом, которым Эйлер обосновывает анализ, вводя нули различных порядков. Бесконечно малая величина, писал Эйлер в «Дифференциальном исчислении» (1755 г.), – это действительно нуль

.

«Стало быть, существует бесконечно много порядков бесконечно малых величин, и хотя все эти величины равны нулю, следует четко отличать их друг от друга, если мы обращаемся к их взаимозависимости, выражающейся геометрическим отношением».

В целом вопрос об основании анализа оставался предметом обсуждения, равно как и все вопросы, относившиеся к бесконечным процессам. «Мистический период» в обосновании анализа (мы пользуемся термином, предложенным Карлом Марксом) в свою очередь порождал мистицизм, заходивший гораздо дальше того, что мы находим у основателей анализа. Гвидо Гранди, монах и профессор в Пизе, известный своим исследованием лепестковых кривых и других кривых, напоминающих цветки, рассматривал формулу

следовательно , как символ творения из ничего. Он получил результат , применив такое истолкование: отец завещает драгоценный камень двум своим сыновьям с тем, что каждый может пользоваться драгоценностью поочередно один год; следовательно, камень принадлежит каждому сыну наполовину.

Пусть эйлерово обоснование анализа имело свои слабые стороны, но свою точку зрения Эйлер во всяком случае высказал вполне определенно. Даламбер в некоторых статьях «Энциклопедии» пытался дать такое обоснование другими средствами. Ньютон пользовался выражением «первое и последнее отношение» для «флюксии», имея в виду первое или последнее отношения двух только что возникших величин. Даламбер заменил это понятием предела: Он называет одну величину пределом другой, если вторая, приближаясь к первой, отличается от нее менее чем на любую заданную величину. «Дифференцирование уравнений состоит попросту в том, что находят пределы отношения конечных разностей двух переменных, входящих в уравнение». Это было, наряду с идеями Даламбера о бесконечных различных порядков, значительным шагом вперед. Однако его современников было не так легко убедить в важности этого шага, и когда Даламбер говорил, что секущая становится касательной при слиянии двух точек пересечения в одну, чувствовалось, что он не преодолел трудностей, присущих парадоксам Зенона. В конце концов, достигает ли переменная величина своего предела, или она никогда его не достигает?

Мы уже упоминали о критике ньютоновских флюксий епископом Беркли. Джордж Беркли, первый настоятель в Дерри, после 1734 г. – епископ в Южной Ирландии, а с 1729 до 1731 г. пребывавший в Ньюпорте, штат Род Айленд, прежде всего известен как крайний идеалист («быть – значит восприниматься»). Он был огорчен тем, что ньютонова наука поддерживает материализм, и он напал на теорию флюксий в своем «Аналисте» (Analyst, 1734 г.). Он издевался над бесконечно малыми как над «тенями усопших величин»; если  получает приращение , то приращение , разделенное на , есть

Это получается в предположении, что  отлично от нуля. Однако флюксию от , то есть , получают, считая  равным нулю, что сразу изменяет исходное предположение об отличии  от нуля. Это было «явным софизмом», который Беркли открыл в анализе, и он был убежден, что верные результаты анализа получаются за счет компенсации ошибок. Логически флюксии нельзя принимать во внимание. «Но тот, кто может переварить вторую или третью флюксию, вторую или третью разность, – восклицал Беркли, обращаясь к неверующему математику (Галлею), – не должен, как мне кажется, придираться к чему-либо в богословии». Это не единственный случай, когда серьезные трудности в науке использовались, чтобы поддержать идеалистическую философию.

Джон Ланден, английский математик-самоучка, чье имя осталось в теории эллиптических интегралов, пытался найти свой метод для преодоления основных затруднений анализа. В своем «Анализе остатков» (Residual analysis, 1764 г.) он ответил на критику Беркли тем, что полностью избегал бесконечно малых; например, производную от  он находил, заменяя  на , после чего

становится равным , когда . Так как этот метод приводит при более сложных функциях к бесконечным рядам, он находится в известном родстве с более поздним алгебраическим методом Лагранжа.

5*. Для России, с которой Эйлер был связан в течение почти всей своей научной деятельности (в годы жизни в Берлине он оставался деятельным сочленом Петербургской академии, печатая в ее изданиях значительную часть своих работ, консультируя по различным вопросам, включая подбор сотрудников Академии, и руководя занятиями командированных к нему молодых ученых), его труды имели особое значение. Многие прикладные работы Эйлера, например по картографии и по морскому делу, были предприняты, чтобы дать ответ на запросы русских правительственных учреждений. В России печатались и трактаты Эйлера, и его учебники элементарного содержания, значительно повысившие уровень математического просвещения: «Руководство к арифметике» Эйлера вышло на русском языке двумя изданиями (1740 и 1760 гг.), «Универсальная арифметика» по-русски была издана раньше (1768–1769 гг.), чем ее немецкий оригинал, «Полное введение в алгебру» (1770 г.), и выдержала три издания. У Эйлера учились первые русские академики по математике (С К. Котельников, 1723–1806) и по астрономии (С. Я. Румовский, 1734–1812, известный также и как автор нескольких математических работ). Во второй петербургский период Эйлер становится центром целой группы ученых, в которую входят, кроме названных: его сын, И.А. Эйлер, чьи заслуги, впрочем, сводятся к тому, что он был «техническим» помощником отца; племянник Эйлера Н.И. Фусс (1755–1826), тоже помогавший почти слепому Эйлеру, автор многих оригинальных исследований, преимущественно по дифференциальной геометрии; А.И. Лекселль (1740–1781), известный своими работами по полигонометрии; астроном и геометр Ф.И. Шуберт (1758–1828). Самостоятельные математические исследования этих учеников Эйлера, состоят преимущественно в решении частных задач, поставленных в работах учителя или связанных с ними, притом с определенным геометрическим уклоном и в рамках эйлеровых методов и приемов. Такое направление вело в сторону от столбовой дороги математики того времени, и в девятнадцатом веке потребовались труды М.В. Остроградского и П.Л. Чебышева, чтобы придать новый блеск Петербургской математической школе.

6. Хотя Эйлер неоспоримо был ведущим математиком этого периода, во Франции по-прежнему появлялись вполне оригинальные работы. Здесь более чем в какой-либо другой стране математику рассматривали как науку, которая должна была довести теорию Ньютона до большего совершенства. Теория всемирного тяготения обладала большой привлекательностью в глазах философов Просвещения, которые пользовались ею как оружием в своей борьбе против остатков феодализма. Католическая церковь включила труды Декарта в индекс запрещенных книг 1664 г., но около 1700 г. его теории стали модными даже в консервативных кругах. Проблема: ньютонианство или картезианство – стала на некоторое время наиболее интересной темой не только для ученых, но и в салонах. «Письма об англичанах» (1734 г.) Вольтера много сделали для знакомства французских читателей с идеями Ньютона; подруга Вольтера мадам Дю Шатле даже перевела «Начала» на французский язык (1759 г.). Существенно спорным вопросом для обеих школ был вопрос о форме Земли.

Согласно космогонии, которую поддерживали картезианцы, Земля у полюсов была удлинена, а по теории Ньютона она должна была там быть сплющена. Картезианские астрономы Кассини (отец Шан Доминик и сын Жак; отец известен в геометрии благодаря овалам Кассини, 1680 г.) промерили дугу меридиана во Франции между 1700 и 1720 гг. и отстаивали картезианский вывод. Возник спор, в котором приняли участие многие математики. В 1735 г. в Перу послали экспедицию, за которой в 1736–1737 гг. последовала другая экспедиция в Лапландию, под руководством Пьера Мопертюи, с целью промерить градус долготы. В результате обеих экспедиций восторжествовала теория Ньютона, это было как ее триумфом, так и триумфом самого Мопертюи. Отныне знаменитый «Великий сплющиватель» стал президентом Берлинской академии и много лет купался в лучах своей славы при дворе Фридриха II. Это продолжалось до 1750 г., когда он вступил в горячий спор со швейцарским математиком Самуилом Кёнигом относительно принципа наименьшего действия в механике, указанного, быть может, уже Лейбницем. Мопертюи, как Ферма до него и Эйнштейн после него, искал какой-то общий принцип, который мог бы объединить законы вселенной. Формулировка Мопертюи не была отчетливой, он определял свое «действие» как величину  ( – масса,  – скорость,  – расстояние). У него это сочеталось с доказательством существования бога. Этот спор особенно обострился тогда, когда Вольтер высмеял неудачливого президента в своей «Диатрибе доктора Акакия, врача папы» (1752 г.). Ни поддержка короля, ни защита Эйлера не могли уже вернуть Мопертюи присутствие духа, и павший духом математик вскоре скончался в Базеле, в доме Бернулли.

Эйлер вновь выдвинул принцип наименьшего действия в формулировке, что должен быть минимумом , и, кроме того, он не вдавался в метафизику Мопертюи. Таким образом, этот принцип был поставлен на твердую почву, и им пользовался Лагранж, позже – Гамильтон. Значение «гамильтониана» в современной математической физике показывает, насколько существенным было то, что внес Эйлер в спор между Мопертюи и Кёнигом.

Среди математиков, побывавших вместе с Мопертюи в Лапландии, был Алексис Клод Клеро. Клеро восемнадцати лет от роду опубликовал «Изыскания о кривых двоякой кривизны» (Recherches sur les courbes a double courbure), первый опыт в области аналитической и дифференциальной геометрии пространственных кривых. По возвращении из Лапландии Клеро опубликовал свою «Теорию фигуры Земли» (Theorie de la figure de la Terre, 1743 г.), образцовое произведение no гидростатике и притяжению эллипсоидов вращения. Лаплас мог его улучшить лишь в незначительных деталях. В числе главных результатов этой работы – условие полноты дифференциала . За этой книгой последовала «Теория Луны» (Theorie de la lune, 1752 г.), содержавшая дополнения к эйлеровой теории движения Луны и к общей задаче трех тел. Клеро принадлежат также результаты в теории криволинейных интегралов и дифференциальных уравнений. Один из типов рассмотренных им дифференциальных уравнений известен под его именем, и с этим связан один из первых примеров особых решений.

7. Интеллектуальная оппозиция старому режиму после 1750 г. имела своим центром знаменитую «Энциклопедию» (1751–1772 гг., 28 томов). Ее редактором был Дени Дидро, под чьим руководством «Энциклопедия» стала подробным изложением философии века Просвещения. Дидро не обладал большими познаниями в математике, ведущим математиком энциклопедистов был Жан ле Рон Даламбер, внебрачный сын аристократической дамы, оставленный как подкидыш вблизи церкви святого Жана ле Рона в Париже. Его ранние и блестящие успехи облегчили его карьеру. В 1754 г. он стал «непременным секретарем» Французской академии и в качестве такового наиболее влиятельным ученым Франции. В 1743 г. появился его «Трактат по динамике» (Traite de la dynamique), который содержит метод сведения динамики твердых тел к статике, известный как «принцип Даламбера». Он продолжал писать по многим прикладным вопросам, в частности по гидродинамике, аэродинамике и задаче трех тел. В 1747 г. он опубликовал теорию колебания струн, что делает его, вместе с Даниилом Бернулли, основателем теории уравнений в частных производных. Тогда как Даламбер и Эйлер нашли решение уравнения  в виде , Бернулли решил это уравнение при помощи тригонометрических рядов. Возникли серьезные сомнения относительно характера этого решения: Даламбер считал, что начальная форма струны может быть задана только одним-единственным аналитическим выражением, в то время как Эйлер полагал, что допустима любая непрерывная кривая. Бернулли утверждал, вопреки Эйлеру, что его решение в виде ряда является вполне общим. Полного разъяснения этого вопроса придаюсь ждать до 1814 г., когда Фурье устранил сомнения относительно законности представления «любой» функции тригонометрическим рядом.

Даламберу не составляло труда писать по многим вопросам, включая даже вопросы обоснования математики. Мы упоминали о том, что он ввел понятие предела. «Основную теорему алгебры» иной раз называют теоремой Даламбера, так как он пытался ее доказать (1746 г.), а «парадокс Даламбера» в теории вероятностей показывает, что он, хотя и не очень успешно, размышлял об основах этой теории.

Теория вероятностей быстро развивалась в течение этого периода главным образом благодаря дальнейшей разработке идей Ферма, Паскаля и Гюйгенса. За «Ars conjectandi» последовали другие книги, среди них «Учение о случае» (The Doctrine of Chance, 1716 г.), написанная Авраамом де Муавром, французским гугенотом, который поселился в Лондоне после отмены Нантского эдикта (1685 г.) и зарабатывал там на жизнь частными уроками. Имя де Муавра связано с тригонометрической теоремой, которая в ее современной форме  впервые появляется во «Введении» Эйлера. В 1733 г. Муавр вывел функцию нормального распределения как аппроксимацию биномиального закона и дал формулу, равносильную формуле Стирлинга. Джеймс Стирлинг, английский математик школы Ньютона, опубликовал свой ряд в 1730 г.

Многочисленные лотереи и страховые компании, которые организовались в течение этого периода, вызвали у многих математиков, включая Эйлера, интерес к теории вероятностей. Это повело к попыткам применить учение о вероятностях в новых областях. Бюффон, известный как автор «Естественной истории» (36 увлекательно написанных томов) и знаменитого рассуждения о стиле (1753 г.; «стиль – это человек»), в 1777 г. дал первый пример геометрической вероятности. Это была так называемая задача об игле, которая занимала многих, так как она давала возможность экспериментально определить число , бросая иголку на плоскость, покрытую параллельными и равноудаленными прямыми, и подсчитывая число пересечений иголки с этими прямыми.

К этому периоду относятся также попытки применить теорию вероятностей к суждениям человека; например, подсчитывали шансы на то, что какой-либо трибунал сможет вынести правильный приговор, если для каждого из свидетелей можно указать число, выражающее вероятность того, что он будет говорить правду. Эта забавная «вероятность суждений», которая отдает философией века Просвещения, занимает видное место в трудах маркиза Кондорсе; она появляется еще у Лапласа и даже у Пуассона (1837 г.).

8. Де Муавр, Стирлинг и Ланден – добротные представители английской математики восемнадцатого века. Но мы должны сказать и о некоторых других англичанах, хотя никто из них не мог равняться со своими коллегами на континенте. Над английской наукой тяготела традиция почитания Ньютона, и его обозначения, неуклюжие по сравнению с обозначениями Лейбница, затрудняли прогресс. Были и глубокие общественные причины, в силу которых английские математики не освобождались от флюксионных методов Ньютона. В Англии, которая вела непрерывную торговую войну с Францией, развивалось чувство интеллектуального превосходства, которое поддерживалось не только победами, военными и торговыми, но тем восхищением, которое вызывала у континентальных философов английская политическая система. Англия стала жертвой своего воображаемого совершенства. Есть сходство между английской математикой восемнадцатого века и античной математикой позднеалександрийской эпохи. В обоих случаях неподходящие обозначения технически затрудняли прогресс, а причины того, что математики ими удовлетворялись, были более глубокого общественного характера.

Ведущим английским, вернее пользовавшимся английским языком, математиком этого периода был Колин Маклорен, профессор Эдинбургского университета, последователь Ньютона, с которым он был лично знаком. Его исследования и обобщения флюксионного метода, работы по кривым второго и более высокого порядка и по притяжению эллипсоидов шли параллельно с исследованиями Клеро и Эйлера. Некоторые из теорем Маклорена вошли в нашу теорию плоских кривых и в нашу проективную геометрию. В его «Органической геометрии» (Geometria organica, 1720 г.) мы находим замечание, известное как парадокс Крамера: кривая -го порядка не всегда определяется  точками, так что девять точек могут не определять однозначно кривую третьего порядка, тогда как может оказаться, что десяти точек слишком много. Здесь же мы находим кинематические методы для описания плоских кривых различных порядков. «Трактат о флюксиях» Маклорена (Treatise of fluxions, 2 тома, 1742 г.), написанный в защиту Ньютона против Беркли, читать трудно из-за его архаичного геометрического языка, что находится в резком контрасте с доступностью работ Эйлера. Маклорен обычно стремился к строгости Архимеда. В книге содержатся исследования Маклорена о притяжении эллипсоидов вращения и его теорема, что два таких конфокальных эллипсоида притягивают частицу на оси или на экваторе силами, пропорциональными их объемам. В этом трактате Маклорен оперирует также со знаменитым «рядом Маклорена».

Впрочем, этот ряд не был новым открытием, так как он появился в «Методе приращений» (Methodus incrementorum, 1715 г.), написанном Бруком Тейлором, в то время секретарем Королевского общества, а еще раньше был открыт И. Бернулли и, по сути, был известен Лейбницу. Маклорен признает то, что он полностью обязан Тейлору. Ряд Тейлора теперь всегда приводят в обозначениях Лагранжа:

Тейлор явно приводит этот ряд для , что многие учебники еще упорно называют рядом Маклорена. В выводе Тейлора нет соображений относительно сходимости ряда, но Маклорен положил начало таким исследованиям и даже владел так называемым интегральным признаком сходимости бесконечных рядов. Полностью важность ряда Тейлора была признана лишь после того, как Эйлер использовал его в своем «Дифференциальном исчислении» (1755 г.). Лагранж добавил к нему остаточный член и положил его в основу своей теории функций. Сам Тейлор использовал свой ряд для интегрирования некоторых дифференциальных уравнений. Он начал исследование колебаний струны, что затем было предметом работ Даламбера и др.

9. Жозеф Луи Лагранж родился в Турине в итало-французской семье. Девятнадцати лет от роду он стал профессором математики артиллерийской школы в Турине (1755 г.). В 1766 г., когда Эйлер уехал из Берлина в Петербург, Фридрих II пригласил Лагранжа в Берлин, и в этом скромном приглашении было сказано, что «необходимо, чтобы величайший геометр Европы проживал вблизи величайшего из королей». Лагранж оставался в Берлине до смерти Фридриха (1786 г.), после чего он переехал в Париж. Во время революции он участвовал в реформе мер и весов, а позже стал профессором сначала Нормальной школы (1795 г.), а затем Политехнической школы (1797 г.).

Исследования по вариационному исчислению относятся к раннему периоду деятельности Лагранжа. Мемуары Эйлера по этому вопросу появились в 1755 г. Лагранж заметил, что метод Эйлера не обладает «всей той простотой, которая желательна в вопросе чистого анализа». В результате появилось чисто аналитическое вариационное исчисление Лагранжа (1760–1761 гг.), в котором не только много оригинальных открытий, но и отлично упорядочен и переработан накопленный исторический материал – то, что характерно для всего творчества Лагранжа. Лагранж сразу применил свою теорию к задачам динамики, причем он полностью использовал эйлерову формулировку принципа наименьшего действия – результат плачевного эпизода с «Акакием». Многие из основных идей «Аналитической механики» (Mecanique analytique, 1788 г.) восходят к туринскому периоду жизни Лагранжа. Он принял участие также в разработке одной из основных проблем своего времени, теории движения Луны. Он дал первые частные решения задачи трех тел. Теорема Лагранжа утверждает, что можно найти такое начальное положение трех тел, при котором их орбитами будут подобные эллипсы, описываемые за одно и то же время (1772 г.). В 1767 г. появились его мемуары «О решении численных уравнений» (Sur la resolution des equations numeriques), в которых он изложил методы отделения вещественных корней алгебраического уравнения и их приближенного вычисления с помощью непрерывных дробей. За этим в 1770 г. последовали «Размышления об алгебраическом решении уравнений» (Reflexions sur la resolution algebrique des equations), в которых рассматривается основной вопрос, почему те методы, которые позволяют решать уравнения не выше четвертой степени, ничего не дают для степени, большей четырех. Эти привело Лагранжа к рациональным функциям от корней и к исследованию их поведения при перестановках корней. Такой метод не только был стимулом для Руффини и Абеля в их работах относительно случая , но он привел Галуа к его теории групп. Лагранж также продвинул теорию чисел, в которой он исследовал квадратичные вычеты, и среди ряда других теорем доказал то, что каждое целое число есть сумма четырех или меньшего числа квадратов.

Вторую часть своей жизни Лагранж посвятил созданию больших трудов: «Аналитической механики» (1788 г.), «Теории аналитических функций» (Theorie des fonctlons analytiques, 1797 г.) и ее продолжения – «Лекций по исчислению функций» (Lecons sur le calcul des fonctions, 1801 г.). Обе книги по теории функций являются попыткой подвести надежный фундамент под анализ, сведя его к алгебре. Лагранж отбросил теорию пределов в том виде, как она была указана Ньютоном и сформулирована Даламбером. Он не мог как следует уяснить себе, что происходит, когда  достигает своего предела. Говоря словами Лазаря Карно, «организатора победы» во времена французской революции, который также был недоволен ньютоновским методом бесконечно малых: «Этот метод имеет тот большой недостаток, что количества рассматриваются в состоянии, когда они, так сказать, перестают быть количествами; ибо хотя мы всегда хорошо представляем себе отношение двух количеств, пока они остаются конечными, с этим отношением наш ум не связывает ясного и точного представления, как только его члены, оба в одно и то же время, становятся ничем». Метод Лагранжа отличается от метода его предшественников. Он начинает с ряда Тейлора, который выводится вместе с остаточным членом, доказывая несколько наивным способом, что «произвольная» функция  может быть разложена в такой ряд с помощью чисто алгебраического процесса. Затем производные  определяются как коэффициенты при  в разложении Тейлора  по степеням . (Обозначения  принадлежат Лагранжу.)

Хотя этот алгебраический метод обоснования анализа оказался неудовлетворительным и хотя Лагранж не уделил достаточного внимания сходимости рядов, такая абстрактная трактовка функций была значительным шагом вперед. Здесь впервые выступает на сцену теория функций вещественного переменного с применениями к разнообразным задачам алгебры и геометрии.

«Аналитическая механика» Лагранжа – это, может быть, наиболее ценный его труд, который все еще заслуживает тщательного изучения. В этой книге, которая появилась через сто лет после «Начал» Ньютона, вся мощь усовершенствованного анализа использована в механике точек и твердых тел. Результаты Эйлера, Даламбера и других математиков восемнадцатого столетия здесь обработаны и развиты с единой точки зрения. Благодаря полному использованию вариационного исчисления самого Лагранжа оказалось возможным объединить различные принципы статики и динамики, в статике – путем использования принципа виртуальных скоростей, в динамике – принципа Даламбера. Это естественным образом привело к обобщенным координатам и к уравнениям движения в их лагранжевой форме:

.

Теперь уже был полностью отброшен геометрический подход Ньютона; книга Лагранжа была триумфом чистого анализа, и ее автор зашел настолько далеко, что подчеркивал в предисловии: «В этой работе вовсе нет чертежей, в ней только алгебраические операции». Это характеризует Лагранжа как первого чистого аналитика.

10. Мы переходим к Пьеру Симону Лапласу, последнему из ведущих математиков восемнадцатого века. Сын скромного землевладельца в Нормандии, он учился в Бомоне и Кане, с помощью Даламбера стал профессором математики военной школы в Париже. Он занимал и несколько других преподавательских и административных должностей, во время революции принимал участие в организации как Нормальной, так и Политехнической школы. Наполеон удостоил его многих почестей, но то же делал и Людовик XVIII. В противоположность Монжу и Карно Лаплас легко менял свои политические привязанности, и при всем том в нем было кое-что от сноба. Впрочем, такая неустойчивость позволила ему продолжать свою чисто математическую деятельность при всех политических изменениях во Франции.

Двумя большими трудами Лапласа, в которых дана сводка не только его исследований, но и всех предыдущих работ в соответствующих областях, являются «Аналитическая теория вероятностей» (Theorie analytique des probabilites, 1812 г.) и «Небесная механика» (Mecanique celeste, 1799–1825 гг., в 5 томах). Обоим монументальным произведениям сопутствовали развернутые популярные изложения, «Философский опыт относительно вероятностей» (Essai philosophique sur les probabilites, 1814 г.) и «Изложение системы мира» (Exposition du systeme du monde, 1796 г.). Это «Изложение» содержит гипотезу о происхождении солнечной системы из туманности, предложенную до того Кантом в 1755 г. (и даже раньше Канта Сведенборгом в 1734 г.). «Небесная механика» является завершением трудов Ньютона, Клеро, Даламбера, Эйлера, Лагранжа и Лапласа по теории фигуры Земли, теории Луны, по задаче трех тел и теории возмущений планет, включая основную проблему об устойчивости солнечной системы. Термин «уравнение Лапласа» напоминает нам о том, что одной из частей «Небесной механики» является теория потенциала. (Само это уравнение было найдено Эйлером в 1752 г. при выводе некоторых основных уравнений гидродинамики.) С этими пятью томами связано немало анекдотов. Хорошо изветен предполагаемый ответ Лапласа Наполеону, который попытался упрекнуть его, заявив, что в его книге нет упоминаний о боге: «Государь, я не нуждался в этой гипотезе». А Натаниел Воудич из Бостона, который перевел четыре тома труда Лапласа на английский язык, как-то сказал: «Всегда, когда я встречал у Лапласа заявление «Итак, легко видеть...», я был уверен, что мне потребуются часы напряженной работы, пока я заполню пробел, догадаюсь и покажу, как это легко видеть». Математическая карьера Гамильтона началась с того, что он нашел ошибку в «Небесной механике» Лапласа. Грин пришел к мысли о математической теории электричества при чтении Лапласа.

«Философский опыт относительно вероятностей» – это легко читающееся введение в теорию вероятностей. Оно содержит лапласово «отрицательное» определение вероятности с помощью «равновероятных событий»:

«Теория вероятностей состоит в сведении всех событий одного и того же рода к некоторому числу равновероятных случаев, т. е. случаев, относительно существования которых мы в равной мере не осведомлены, и в определении числа тех случаев, которые благоприятны для события, вероятность которого мы ищем». Вопросы, касающиеся вероятностей, согласно Лапласу возникают потому, что мы частично осведомлены, частично нет. Это привело Лапласа к его знаменитому утверждению, в котором воплощено то, как восемнадцатое столетие понимало механистический материализм: «Ум, который знал бы все действующие в данный момент силы природы, а также относительное положение всех составляющих ее частиц и который был бы достаточно обширен, чтобы все эти данные подвергнуть математическому анализу, смог бы охватить единой формулой движение как величайших тел вселенной, так и ее легчайших атомов; для него не было бы ничего неопределенного, он одинаково ясно видел бы и будущее, и прошлое. То совершенство, какое человеческий разум был в состоянии придать астрономии, дает лишь слабое представление о таком уме».

Трактат «Аналитическая теория вероятностей» настолько богат содержанием, что многие позднейшие открытия теории вероятностей можно обнаружить у Лапласа. В этом внушительном томе подробно рассмотрены азартные игры, геометрические вероятности, теорема Бернулли и ее связь с интегралом нормального распределения, теория наименьших квадратов, изобретенная Лежандром. Руководящей мыслью является применение «производящих функций»; Лаплас показал значение этого метода для решения разностных уравнений. Здесь вводится «преобразование Лапласа», которые позже стало основой операционного исчисления Хевисайда. Лаплас также спас от забвенья и заново сформулировал ту теорию, набросок которой дал Томас Байес, мало известный английский священник, работы которого были опубликованы посмертно в 1763–1764 гг. Эта теория стала известна как теория вероятностей a posteriori.

11. Любопытно то обстоятельство, что к концу века некоторые ведущие математики высказывались в том смысле, что область математических исследований как бы истощена. Труды и усилия Эйлера, Лагранжа, Даламбера и других уже дали наиболее важные теоремы, эти результаты в должном оформлении изложены или в скором времени будут изложены в классических трактатах, и немногочисленные математики следующего поколения должны будут решать только задачи меньшего значения. «Не кажется ли Вам, что высшая геометрия близится отчасти к упадку, – писал Лагранж Даламберу в 1772 г., – ее поддерживаете только Вы и Эйлер». Лагранж даже на некоторое время прекратил занятия математикой. Даламбер в ответ мало чем мог обнадежить. Араго в своей «Похвальной речи о Лапласе» (1842 г.) позже высказал мысль, которая поможет нам понять эти чувства:

«Пять геометров, Клеро, Эйлер, Даламбер, Лагранж и Лаплас, разделили между собою тот мир, существование которого открыл Ньютон. Они исследовали его во всех направлениях, проникли в области, которые считались недоступными, указали множество явлений в этих областях, которые еще не были открыты наблюдением, и, наконец, – в этом их вечная слава – они охватили с помощью одного принципа, одного-единственного закона самые тонкие и таинственные явления в движении небесных тел. Таким образом, геометрия осмелилась распоряжаться будущим, и ход будущих столетий только подтвердит во всех подробностях заключения науки».

Красноречивый Араго указывает на основной источник пессимизма конца века, именно, на тенденцию отождествлять прогресс математики с прогрессом механики и астрономии. Со времен древнего Вавилона до времен Эйлера и Лапласа астрономия была руководящей и вдохновляющей силой самых замечательных математических открытий, и теперь казалось, что этот процесс достиг своей кульминации. Однако новое поколение, вдохновленное новыми перспективами, открытыми французской революцией и расцветом естествознания, должно было показать, насколько необоснован этот пессимизм. Новый мощный импульс лишь частично был дан во Франции; как часто бывало в истории цивилизации, он шел также и с периферии политических и экономических центров, в данном случае из Гёттингена, от Гаусса.

8. Де Муавр, Стирлинг и Ланден – добротные представители английской математики восемнадцатого века. Но мы должны сказать и о некоторых других англичанах, хотя никто из них не мог равняться со своими коллегами на континенте. Над английской наукой тяготела традиция почитания Ньютона, и его обозначения, неуклюжие по сравнению с обозначениями Лейбница, затрудняли прогресс. Были и глубокие общественные причины, в силу которых английские математики не освобождались от флюксионных методов Ньютона. В Англии, которая вела непрерывную торговую войну с Францией, развивалось чувство интеллектуального превосходства, которое поддерживалось не только победами, военными и торговыми, но тем восхищением, которое вызывала у континентальных философов английская политическая система. Англия стала жертвой своего воображаемого совершенства. Есть сходство между английской математикой восемнадцатого века и античной математикой позднеалександрийской эпохи. В обоих случаях неподходящие обозначения технически затрудняли прогресс, а причины того, что математики ими удовлетворялись, были более глубокого общественного характера.

Ведущим английским, вернее пользовавшимся английским языком, математиком этого периода был Колин Маклорен, профессор Эдинбургского университета, последователь Ньютона, с которым он был лично знаком. Его исследования и обобщения флюксионного метода, работы по кривым второго и более высокого порядка и по притяжению эллипсоидов шли параллельно с исследованиями Клеро и Эйлера. Некоторые из теорем Маклорена вошли в нашу теорию плоских кривых и в нашу проективную геометрию. В его «Органической геометрии» (Geometria organica, 1720 г.) мы находим замечание, известное как парадокс Крамера: кривая -го порядка не всегда определяется  точками, так что девять точек могут не определять однозначно кривую третьего порядка, тогда как может оказаться, что десяти точек слишком много. Здесь же мы находим кинематические методы для описания плоских кривых различных порядков. «Трактат о флюксиях» Маклорена (Treatise of fluxions, 2 тома, 1742 г.), написанный в защиту Ньютона против Беркли, читать трудно из-за его архаичного геометрического языка, что находится в резком контрасте с доступностью работ Эйлера. Маклорен обычно стремился к строгости Архимеда. В книге содержатся исследования Маклорена о притяжении эллипсоидов вращения и его теорема, что два таких конфокальных эллипсоида притягивают частицу на оси или на экваторе силами, пропорциональными их объемам. В этом трактате Маклорен оперирует также со знаменитым «рядом Маклорена».

Впрочем, этот ряд не был новым открытием, так как он появился в «Методе приращений» (Methodus incrementorum, 1715 г.), написанном Бруком Тейлором, в то время секретарем Королевского общества, а еще раньше был открыт И. Бернулли и, по сути, был известен Лейбницу. Маклорен признает то, что он полностью обязан Тейлору. Ряд Тейлора теперь всегда приводят в обозначениях Лагранжа:

Тейлор явно приводит этот ряд для , что многие учебники еще упорно называют рядом Маклорена. В выводе Тейлора нет соображений относительно сходимости ряда, но Маклорен положил начало таким исследованиям и даже владел так называемым интегральным признаком сходимости бесконечных рядов. Полностью важность ряда Тейлора была признана лишь после того, как Эйлер использовал его в своем «Дифференциальном исчислении» (1755 г.). Лагранж добавил к нему остаточный член и положил его в основу своей теории функций. Сам Тейлор использовал свой ряд для интегрирования некоторых дифференциальных уравнений. Он начал исследование колебаний струны, что затем было предметом работ Даламбера и др.

9. Жозеф Луи Лагранж родился в Турине в итало-французской семье. Девятнадцати лет от роду он стал профессором математики артиллерийской школы в Турине (1755 г.). В 1766 г., когда Эйлер уехал из Берлина в Петербург, Фридрих II пригласил Лагранжа в Берлин, и в этом скромном приглашении было сказано, что «необходимо, чтобы величайший геометр Европы проживал вблизи величайшего из королей». Лагранж оставался в Берлине до смерти Фридриха (1786 г.), после чего он переехал в Париж. Во время революции он участвовал в реформе мер и весов, а позже стал профессором сначала Нормальной школы (1795 г.), а затем Политехнической школы (1797 г.).

Исследования по вариационному исчислению относятся к раннему периоду деятельности Лагранжа. Мемуары Эйлера по этому вопросу появились в 1755 г. Лагранж заметил, что метод Эйлера не обладает «всей той простотой, которая желательна в вопросе чистого анализа». В результате появилось чисто аналитическое вариационное исчисление Лагранжа (1760–1761 гг.), в котором не только много оригинальных открытий, но и отлично упорядочен и переработан накопленный исторический материал – то, что характерно для всего творчества Лагранжа. Лагранж сразу применил свою теорию к задачам динамики, причем он полностью использовал эйлерову формулировку принципа наименьшего действия – результат плачевного эпизода с «Акакием». Многие из основных идей «Аналитической механики» (Mecanique analytique, 1788 г.) восходят к туринскому периоду жизни Лагранжа. Он принял участие также в разработке одной из основных проблем своего времени, теории движения Луны. Он дал первые частные решения задачи трех тел. Теорема Лагранжа утверждает, что можно найти такое начальное положение трех тел, при котором их орбитами будут подобные эллипсы, описываемые за одно и то же время (1772 г.). В 1767 г. появились его мемуары «О решении численных уравнений» (Sur la resolution des equations numeriques), в которых он изложил методы отделения вещественных корней алгебраического уравнения и их приближенного вычисления с помощью непрерывных дробей. За этим в 1770 г. последовали «Размышления об алгебраическом решении уравнений» (Reflexions sur la resolution algebrique des equations), в которых рассматривается основной вопрос, почему те методы, которые позволяют решать уравнения не выше четвертой степени, ничего не дают для степени, большей четырех. Эти привело Лагранжа к рациональным функциям от корней и к исследованию их поведения при перестановках корней. Такой метод не только был стимулом для Руффини и Абеля в их работах относительно случая , но он привел Галуа к его теории групп. Лагранж также продвинул теорию чисел, в которой он исследовал квадратичные вычеты, и среди ряда других теорем доказал то, что каждое целое число есть сумма четырех или меньшего числа квадратов.

Вторую часть своей жизни Лагранж посвятил созданию больших трудов: «Аналитической механики» (1788 г.), «Теории аналитических функций» (Theorie des fonctlons analytiques, 1797 г.) и ее продолжения – «Лекций по исчислению функций» (Lecons sur le calcul des fonctions, 1801 г.). Обе книги по теории функций являются попыткой подвести надежный фундамент под анализ, сведя его к алгебре. Лагранж отбросил теорию пределов в том виде, как она была указана Ньютоном и сформулирована Даламбером. Он не мог как следует уяснить себе, что происходит, когда  достигает своего предела. Говоря словами Лазаря Карно, «организатора победы» во времена французской революции, который также был недоволен ньютоновским методом бесконечно малых: «Этот метод имеет тот большой недостаток, что количества рассматриваются в состоянии, когда они, так сказать, перестают быть количествами; ибо хотя мы всегда хорошо представляем себе отношение двух количеств, пока они остаются конечными, с этим отношением наш ум не связывает ясного и точного представления, как только его члены, оба в одно и то же время, становятся ничем». Метод Лагранжа отличается от метода его предшественников. Он начинает с ряда Тейлора, который выводится вместе с остаточным членом, доказывая несколько наивным способом, что «произвольная» функция  может быть разложена в такой ряд с помощью чисто алгебраического процесса. Затем производные  определяются как коэффициенты при  в разложении Тейлора  по степеням . (Обозначения  принадлежат Лагранжу.)

Хотя этот алгебраический метод обоснования анализа оказался неудовлетворительным и хотя Лагранж не уделил достаточного внимания сходимости рядов, такая абстрактная трактовка функций была значительным шагом вперед. Здесь впервые выступает на сцену теория функций вещественного переменного с применениями к разнообразным задачам алгебры и геометрии.

«Аналитическая механика» Лагранжа – это, может быть, наиболее ценный его труд, который все еще заслуживает тщательного изучения. В этой книге, которая появилась через сто лет после «Начал» Ньютона, вся мощь усовершенствованного анализа использована в механике точек и твердых тел. Результаты Эйлера, Даламбера и других математиков восемнадцатого столетия здесь обработаны и развиты с единой точки зрения. Благодаря полному использованию вариационного исчисления самого Лагранжа оказалось возможным объединить различные принципы статики и динамики, в статике – путем использования принципа виртуальных скоростей, в динамике – принципа Даламбера. Это естественным образом привело к обобщенным координатам и к уравнениям движения в их лагранжевой форме:

.

Теперь уже был полностью отброшен геометрический подход Ньютона; книга Лагранжа была триумфом чистого анализа, и ее автор зашел настолько далеко, что подчеркивал в предисловии: «В этой работе вовсе нет чертежей, в ней только алгебраические операции». Это характеризует Лагранжа как первого чистого аналитика.

10. Мы переходим к Пьеру Симону Лапласу, последнему из ведущих математиков восемнадцатого века. Сын скромного землевладельца в Нормандии, он учился в Бомоне и Кане, с помощью Даламбера стал профессором математики военной школы в Париже. Он занимал и несколько других преподавательских и административных должностей, во время революции принимал участие в организации как Нормальной, так и Политехнической школы. Наполеон удостоил его многих почестей, но то же делал и Людовик XVIII. В противоположность Монжу и Карно Лаплас легко менял свои политические привязанности, и при всем том в нем было кое-что от сноба. Впрочем, такая неустойчивость позволила ему продолжать свою чисто математическую деятельность при всех политических изменениях во Франции.

Двумя большими трудами Лапласа, в которых дана сводка не только его исследований, но и всех предыдущих работ в соответствующих областях, являются «Аналитическая теория вероятностей» (Theorie analytique des probabilites, 1812 г.) и «Небесная механика» (Mecanique celeste, 1799–1825 гг., в 5 томах). Обоим монументальным произведениям сопутствовали развернутые популярные изложения, «Философский опыт относительно вероятностей» (Essai philosophique sur les probabilites, 1814 г.) и «Изложение системы мира» (Exposition du systeme du monde, 1796 г.). Это «Изложение» содержит гипотезу о происхождении солнечной системы из туманности, предложенную до того Кантом в 1755 г. (и даже раньше Канта Сведенборгом в 1734 г.). «Небесная механика» является завершением трудов Ньютона, Клеро, Даламбера, Эйлера, Лагранжа и Лапласа по теории фигуры Земли, теории Луны, по задаче трех тел и теории возмущений планет, включая основную проблему об устойчивости солнечной системы. Термин «уравнение Лапласа» напоминает нам о том, что одной из частей «Небесной механики» является теория потенциала. (Само это уравнение было найдено Эйлером в 1752 г. при выводе некоторых основных уравнений гидродинамики.) С этими пятью томами связано немало анекдотов. Хорошо изветен предполагаемый ответ Лапласа Наполеону, который попытался упрекнуть его, заявив, что в его книге нет упоминаний о боге: «Государь, я не нуждался в этой гипотезе». А Натаниел Воудич из Бостона, который перевел четыре тома труда Лапласа на английский язык, как-то сказал: «Всегда, когда я встречал у Лапласа заявление «Итак, легко видеть...», я был уверен, что мне потребуются часы напряженной работы, пока я заполню пробел, догадаюсь и покажу, как это легко видеть». Математическая карьера Гамильтона началась с того, что он нашел ошибку в «Небесной механике» Лапласа. Грин пришел к мысли о математической теории электричества при чтении Лапласа.

«Философский опыт относительно вероятностей» – это легко читающееся введение в теорию вероятностей. Оно содержит лапласово «отрицательное» определение вероятности с помощью «равновероятных событий»:

«Теория вероятностей состоит в сведении всех событий одного и того же рода к некоторому числу равновероятных случаев, т. е. случаев, относительно существования которых мы в равной мере не осведомлены, и в определении числа тех случаев, которые благоприятны для события, вероятность которого мы ищем». Вопросы, касающиеся вероятностей, согласно Лапласу возникают потому, что мы частично осведомлены, частично нет. Это привело Лапласа к его знаменитому утверждению, в котором воплощено то, как восемнадцатое столетие понимало механистический материализм: «Ум, который знал бы все действующие в данный момент силы природы, а также относительное положение всех составляющих ее частиц и который был бы достаточно обширен, чтобы все эти данные подвергнуть математическому анализу, смог бы охватить единой формулой движение как величайших тел вселенной, так и ее легчайших атомов; для него не было бы ничего неопределенного, он одинаково ясно видел бы и будущее, и прошлое. То совершенство, какое человеческий разум был в состоянии придать астрономии, дает лишь слабое представление о таком уме».

Трактат «Аналитическая теория вероятностей» настолько богат содержанием, что многие позднейшие открытия теории вероятностей можно обнаружить у Лапласа. В этом внушительном томе подробно рассмотрены азартные игры, геометрические вероятности, теорема Бернулли и ее связь с интегралом нормального распределения, теория наименьших квадратов, изобретенная Лежандром. Руководящей мыслью является применение «производящих функций»; Лаплас показал значение этого метода для решения разностных уравнений. Здесь вводится «преобразование Лапласа», которые позже стало основой операционного исчисления Хевисайда. Лаплас также спас от забвенья и заново сформулировал ту теорию, набросок которой дал Томас Байес, мало известный английский священник, работы которого были опубликованы посмертно в 1763–1764 гг. Эта теория стала известна как теория вероятностей a posteriori.

11. Любопытно то обстоятельство, что к концу века некоторые ведущие математики высказывались в том смысле, что область математических исследований как бы истощена. Труды и усилия Эйлера, Лагранжа, Даламбера и других уже дали наиболее важные теоремы, эти результаты в должном оформлении изложены или в скором времени будут изложены в классических трактатах, и немногочисленные математики следующего поколения должны будут решать только задачи меньшего значения. «Не кажется ли Вам, что высшая геометрия близится отчасти к упадку, – писал Лагранж Даламберу в 1772 г., – ее поддерживаете только Вы и Эйлер». Лагранж даже на некоторое время прекратил занятия математикой. Даламбер в ответ мало чем мог обнадежить. Араго в своей «Похвальной речи о Лапласе» (1842 г.) позже высказал мысль, которая поможет нам понять эти чувства:

«Пять геометров, Клеро, Эйлер, Даламбер, Лагранж и Лаплас, разделили между собою тот мир, существование которого открыл Ньютон. Они исследовали его во всех направлениях, проникли в области, которые считались недоступными, указали множество явлений в этих областях, которые еще не были открыты наблюдением, и, наконец, – в этом их вечная слава – они охватили с помощью одного принципа, одного-единственного закона самые тонкие и таинственные явления в движении небесных тел. Таким образом, геометрия осмелилась распоряжаться будущим, и ход будущих столетий только подтвердит во всех подробностях заключения науки».

Красноречивый Араго указывает на основной источник пессимизма конца века, именно, на тенденцию отождествлять прогресс математики с прогрессом механики и астрономии. Со времен древнего Вавилона до времен Эйлера и Лапласа астрономия была руководящей и вдохновляющей силой самых замечательных математических открытий, и теперь казалось, что этот процесс достиг своей кульминации. Однако новое поколение, вдохновленное новыми перспективами, открытыми французской революцией и расцветом естествознания, должно было показать, насколько необоснован этот пессимизм. Новый мощный импульс лишь частично был дан во Франции; как часто бывало в истории цивилизации, он шел также и с периферии политических и экономических центров, в данном случае из Гёттингена, от Гаусса.

1 сажень = 2.1336 метра = 7 футам, 1 фут = 0.3048 метра = 12

дюймам, 1 дюйм = 25.4 мм = 10 линиям, 1 линия = 2.540 мм = 10

точкам, 1 братина = 1.5 кружки, 1 аршин = 0.7112 метра = 16

вершкам, 1 локоть = 0.5038 метра = 10 2/3 вершкам, пядь = 0.1778

метра = 4 вершкам, 1чарка = 0.12 литра = 2 шкаликам = 1/100

ведра, АПТЕКАРСКИЙ ВЕС: аптекарский фунт = 12 унций = 358.328 г

1 унция = 8 драхм = 29.860 1 г 1 драхма = 3 скрупул = 3.732 г ,

1скрупул = 20 гранов = 1.244 г , 1 гран = 0.062 г.



 

А также другие работы, которые могут Вас заинтересовать

32326. Механизм государства: понятие структура и ее эволюция в государствах различных типов. Основные принципы деятельности в современных государствах 54 KB
  Механизм государства: понятие структура и ее эволюция в государствах различных типов. Основные принципы деятельности в современных государствах. Граждане могут принимать то или иное участие в делах государства но в конечном итоге государственные органы должностные лица несут персональную ответственность за эффективность своей работы В. Подобная система государственных органов профессиональных коллективов и называется механизмом государства.
32327. Органы государства: понятие, признаки и виды органов государства 37 KB
  Органы государства: понятие признаки и виды органов государства Анализ государства с позиций его механизма позволяет выявить место и роль каждого элемента в системе государственного властвования определить его оптимальную структуру иерархические связи с иными элементами и т. Признаки органа государства: 1 представляет собой самостоятельный элемент механизма государства выступая неотъемлемой частью единого государственного организма; 2 действует от имени государства и по его поручению; 3 образован и функционирует на основе...
32328. Основные положения теории разделения властей и ее значение в современных условиях 47.5 KB
  Основные положения теории разделения властей и ее значение в современных условиях. В современном мире разделение властей характерная черта признанный атрибут правового демократического государства. Сама же теория разделения властей итог многовекового развития государственности поиска наиболее действенных механизмов предохраняющих общество от деспотизма. Теория разделения властей была создана несколькими исследователями политики: идея высказывалась Аристотелем теоретически была развита и обоснована Джоном Локком 16321704 гг.
32329. Форма правления государства. Понятие, виды, характеристика отдельных видов форм правления 39.5 KB
  Форма правления государства. Понятие виды характеристика отдельных видов форм правления. Форма государства это способ организации политической власти охватывающий форму правления форму государственного устройства и политический режим. Форма государственного правления это элемент формы государства характеризующий организацию верховной государственной власти порядок образования ее органов и их взаимоотношения с населением.
32330. Форма государственного устройства как элемент формы государства. Понятие, виды, характеристика отдельных видов 33.5 KB
  Форма государственного устройства как элемент формы государства. Форма государственного устройства это элемент формы государства характеризующий внутреннюю структуру государства способ его политического и территориального деления обусловливающий определенные взаимоотношения органов всего государства с органами его составных частей. Взимание местных налогов как правило допускается с санкции государства. Территории в отличие от государства не вправе по своему усмотрению устанавливать и взимать налоги.
32331. Политический режим как элемент формы государства. Понятие режима. Виды режимов. Демократия как режим государства. Ее значение и виды. Антидемократические режимы и их виды 62 KB
  Политический государственный режим это система методов способов и средств осуществления политической власти. По мнению других авторов понятие политический режим более широкое чем понятие государственный режим поскольку включает в себя методы и приемы осуществления политической власти не только со стороны государства но и со стороны политических партий и движений общественных объединений организаций и т. Если первая показывает весь комплекс институтов участвующих в политической жизни общества и в осуществлении политической...
32332. Политическая система общества. Ее понятие, структура, типы. Характеристика отдельных типов политических систем 46.5 KB
  Выделяют следующие компоненты политической системы: 1 политическая организация общества включающая в себя государство политические партии и движения общественные организации и объединения трудовые коллективы и т.; 2 политическое сознание характеризующее психологические и идеологические стороны политической власти и политической системы; 3 социальнополитические и правовые нормы регулирующие политическую жизнь общества и процесс осуществления политической власти; 4 политические отношения складывающиеся между элементами системы...
32333. Место и роль государства и права в политической системе общества 33.5 KB
  Место и роль государства и права в политической системе общества Понятия государство и политическая система общества соотносятся как часть и целое. Государство концентрирует в себе все многообразие политических интересов регулируя явления политической жизни через призму общеобязательности. Именно в этом качестве государство играет особую роль в политической системе придавая ей своего рода целостность и устойчивость. Государство занимает центральное ведущее положение в политической системе общества так как оно: 1 выступает в качестве...
32334. Понятие и роль социальных норм. Деление их на обычаи, нравственные, правовые, корпоративные. Взаимосвязь правовых и иных социальных норм. Другие основания классификации социальных норм 55 KB
  Важнейшим средством организации общественных отношений являются социальные нормы: нормы права нормы морали нормы общественных организаций нормы традиций обычаев и ритуалов. Эти нормы обеспечивают наиболее целесообразное и гармоничное функционирование общества в соответствии с потребностями его развития. Социальные нормы это правила регулирующие поведение людей и деятельность организаций в их взаимоотношениях. Социальные нормы характеризуются рядом признаков: 1.