80192

Методы анализа линейных цепей

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Все электрические цепи состоящие из сопротивлений емкостей индуктивностей и соединительных проводов линейны. Анализ отклика линейной цепи на известное входное воздействие сводится при этом к известной в математике задаче решения линейного дифференциального уравнения nго порядка с постоянными коэффициентами. Порядок n этого уравнения в радиотехнике принято называть порядком линейной цепи системы.

Русский

2015-02-16

136 KB

6 чел.

PAGE   \* MERGEFORMAT8

Лекция «Методы анализа линейных цепей»

Линейные цепи состоят из пассивных и активных элементов, параметры которых не зависят от протекающих в них токов и приложенных к ним напряжений. Все электрические цепи, состоящие из сопротивлений, емкостей, индуктивностей и соединительных проводов, линейны.

Cвязь между входным UВХ(t) = UВХ и выходным UВЫХ(t) = UВЫХ сигналами устанавливают с помощью дифференциального уравнения

Если цепь (далее часто четырехполюсник) линейна, то все коэффициенты

а0, a1,..., an  и  b0, b1,..., bm — постоянные вещественные числа.

Если UВХ(t) задан, то правая часть уравнения , которую условно обозначим через iВХ(t), является известной функцией. Анализ отклика линейной цепи на известное входное воздействие сводится при этом к известной в математике задаче решения линейного дифференциального уравнения n-го порядка с постоянными коэффициентами.

Порядок n этого уравнения в радиотехнике принято называть порядком линейной цепи (системы).

К линейным цепям (системам) применим принцип суперпозиции: выходной сигнал линейной цепи на суммарное воздействие нескольких входных источников равен алгебраической сумме откликов на воздействие (входной сигнал) каждого источника в отдельности.

где В — линейный оператор, характеризующий вид воздействия линейной цепи на входной сигнал.

Линейным системам свойственна еще и однородность (гомогенность), т. е. отклик системы на входной сигнал, усиленный в определенное число раз, будет усилен в то же число раз.

При анализе процессов в электрических цепях необходимо определить отклик цепи на входной сигнал в виде сигнала заданной формы. Отклик выражают в значениях напряжений u(t) и токов i(t) в разные моменты времени. При анализе воздействия сигналов на сложные по структуре цепи применяют следующие методы анализа:

  •  классический;
  •  частотный (спектральный);
  •  операторный;
  •  метод интеграла наложения.

Классический метод основан на составлении и решении дифференциальных уравнений и наиболее удобен для анализа прохождения импульсных сигналов через линейные цепи. Метод прост, нагляден, хорошо отражает физическую суть процессов. Очень сложен при анализе процессов и цепей выше третьего порядка. В этом случае удобнее применять спектральный и операторный методы или метод интеграла наложения.

Частотный (спектральный) метод. Оперирует с помощью параметра К(ω)- частотный коэффициент передачи.

В комплексном виде

Частотный коэффициент передачи (или просто коэффициент передачи)

Модуль коэффициента передачи К(ω) = |К(ω)| называют амплитудно- частотной характеристикой (АЧХ), а аргумент φ(ω)фазочастотной характеристикой (ФЧХ). 

Полоса пропускания (рабочая полоса) — области частот, где модуль коэффициента передачи К(ω) становится не менее 1/(2)0,5  своего максимального значения. На границах полосы пропускания модуль коэффициента передачи по мощности, равный отношению выходной и входной мощностей, уменьшается в два раза.

Ширина полосы пропускания 

∆ω = ωВ - ωН.

Для циклической частоты

Если на вход линейной цепи подается гармонический сигнал единичной амплитуды, имеющий комплексную аналитическую модель вида UВХ(t) = еjωt, то сигнал на ее выходе запишется как UВЫХ(t) = К(ω) еjωt . Подставляя эти выражения в (1), после несложных преобразований запишем К(ω) в форме дифференциального уравнения

Т.е. если коэффициенты постоянные то К(ω) представляет собой дробно-рациональную функцию переменной jω. При этом коэффициенты этой функции совпадают с коэффициентами дифференциального уравнения. С помощью частотного коэффициента передачи К(ω) можно определить сигнал на выходе линейного четырехполюсника. Пусть на входе линейного четырехполюсника с частотным коэффициентом передачи К(ω) действует  непрерывный сигнал произвольной формы в виде напряжения UBX(t). Применив прямое преобразование Фурье

определим спектральную плотность входного сигнала SВХ(ω). Тогда спектральная плотность сигнала на выходе линейного четырехполюсника

Проведя обратное преобразование Фурье

 

от спектральной плотности, получим выходной сигнал

Операторный метод  основан на замене оператора дифференцирования d/dt комплексным параметром р, который переводит анализ сигналов из временной области в область комплексных величин. Рассмотрим некоторый комплексный или вещественный аналоговый сигнал u(t), определенный при t≥0 и равный нулю в момент времени t =0.  Преобразование Лапласа этого сигнала есть функция комплексной переменной р, выраженная интегралом 

 

u(t) называют оригиналом, а функцию U(p) его изображением

Для примера определим изображение функции включения σ(t)=1(t)

Учитывая

Получим

Преобразование Лапласа обладает линейными свойствами, т.е.

Обратное преобразование Лапласа

где а1 — вещественная переменная, отражаемая на комплексной плоскости.

Осуществив преобразование Лапласа обеих частей дифференциального уравнения (1), получим

Передаточной функцией (операторным коэффициентом передачи) линейной цепи называется .

Где через Q(p) обозначают сомножитель перед UВЫХ(р) называя собственным оператором системы, а сомножитель перед UВХ(р) — через R(p) и называют оператором воздействия.

Передаточная функция К(р) отражает результат аналитического переноса комплексного частотного коэффициента передачи К(ω) с мнимой осную на всю область комплексных частот р=α+jω.

Если известна передаточная функция К(р), то выходную реакцию электрической цепи на заданное входное воздействие UВХ(t) можно определить по следующей схеме:

• записать изображение входного сигнала UВХ(t) -> UВХ(р);

• найти изображение выходного сигнала UВЫХ(р) = K(p)* UВХ(р);

• вычислить выходной сигнал UВЫХ(р)  -> UВЫХ(t).

Метод интеграла наложения. Cвойства линейных четырехполюсников часто проще оценить видом их отклика на воздействие ряда элементарных сигналов. В качестве элементарных сигналов используются

  •  прямоугольные импульсы, длительностью ∆, в пределе стремящиеся к дельта-функции δ(t);
  •  ступенчатые функции, возникающие в виде функций включения σ(t) через равные промежутки времени ∆. Высота каждой ступеньки равна приращению сигнала на интервале времени ∆.

Дельта-функция и функция включения связаны между собой аналитически. Результатом дифференцирования единичной функции является дельта-функция

Импульсная характеристики линейной цепи h(t) - реакцию системы на поданную на вход дельта-функцию δ(t).

Переходная характеристика g(t) - отклик линейной цепи на единичную функцию σ(t).  Пример

Характеристики линейной цепи.

а — различные виды импульсных; б — переходная

Если входной и выходной сигналы линейной цепи имеют одинаковую размерность, то импульсная характеристика, как и дельта-функция времени, имеет размерность частоты.

а - входной сигнал- прямоугольных импульсов

б - отклики на импульсы и выходной сигнал

а - входной сигнал- прямоугольных импульсов

б - отклики на импульсы и выходной сигнал

Положим, что требуется определить выходной сигнал UВЫХ(t). Известны ее импульсная характеристика h(t) и входной сигнал UВХ(t). Заменим приближенно кривую входного сигнала UВХ(t)ступенчатой линией в виде совокупности достаточно коротких прямоугольных импульсов, имеющих одинаковую длительность ∆τ. Если выбрать длительность ∆τ бесконечно малой, то отклик линейной цепи на первый по счету прямоугольный импульс будет приближенно равен отклику той же цепи на дельта- функцию (а это будет импульсная характеристика), умноженному на площадь (UВХ(0) ∆τ) первого импульса, т. е. UВХ(0) ∆τ h(t) Откликом цепи на второй импульс является произведение UВХ(∆τ) ∆τ h(t- ∆τ) , где UВХ(∆τ) ∆ τ — площадь этого импульса, а величина h(t- ∆τ) — импульсная характеристика цепи, соответствующая моменту времени t = ∆τ. Следовательно, для некоторого произвольного момента времени t = n ∆τ (n — число условно сформированных импульсов,  

приходящихся на интервал времени O...t) отклик линейной цепи приближенно выразится суммой 

Если длительность импульсов ∆τ, отражающих входной сигнал, последовательно приближается к нулю, то малое приращение времени ∆τ превращается в dτ, а операция суммирования трансформируется в операцию интегрирования по переменной τ= k ∆τ

В более общей форме

В теории электрических цепей часто применяют другую, эквивалентную форму интеграла Дюамеля


 

А также другие работы, которые могут Вас заинтересовать

52963. Musical Festival “The Sounds of Music” 69.5 KB
  P1 - Good afternoon, everybody. P2 - Good afternoon, dear friends. P1 - Welcome to our musical festival “The Sounds of Music” P2 - Today we are going to present you some of the most popular English and American songs. P1 - Let’s listen to a very popular American song about a little car. Children love to sing it.
52965. Les langues étrangères c’est l’avenir? 61.5 KB
  Ce pays se trouve en Europe. Le français est la langue maternelle. La population de tout le pays est 3 fois moins grande que la population de notre ville Donetsk. Dans ce pays on parle encore une langue : l’allemand. C’est le Grand-duché. Son territoire est 2600 km². Vous traversez ce petit pays pour aller de France en Allemagne. C’est quel pays ?
52966. Faits divers 54 KB
  En classe entière, l’enseignant introduit l’activité par le jeu d'associations en utilisant les photos sur les sujets: "L'accident de la route", "L'incendie", "Le cambriolage". Ces photos, elles vous font penser à quoi?
52967. ВЛАСТИВОСТІ НАЙПРОСТІШИХ ГЕОМЕТРИЧНИХ ФІГУР, СУМІЖНИХ ТА ВЕРТИКАЛЬНИХ КУТІВ 99.5 KB
  Є про трикутники є про кути. Геометрія це наука про властивості Через будьякі дві точки можна провести Відрізком називається частина прямої яка складається з усіх точок Довжина відрізка дорівнює сумі довжин Пряма розбиває площину Якщо кінці відрізка належать одній півплощиніто Якщо кінці відрізка належать різним півплощинамто Градусна міра кута дорівнює сумі градусних мір Трикутником називається фігура яка складається з Два кути називаються суміжними якщо Два кути називаються вертикальними якщо Основна властивість суміжних кутів...
52968. Розв’язування задач і вправ на обчислення площ та об’ємів геометричних фігур 52.5 KB
  Записуємо число класна робота і тему урока в зошиті II Перевірка домашнього завдання. Перевіримо зарання Як зробили ви завдання Олівці взяли у руки Й приступили до науки Щоб ви менше хвилювались Зошитами обмінялись. Тестові завдання. Завдання для 1 групи.
52969. Марш. Музыка 1 класс 50.5 KB
  Тема: Марш Цели: познакомиться с жанром марш; рассмотреть жизненные обстоятельства при которых звучит марш научиться различать разные виды маршей. Организация урока: построение перед классом вход под музыку марша музыкальное приветствие. Марш пофранцузски ходьба движение. От этого слова и пошло наше маршировать то есть ходить особенным ладным и четким шагом.
52970. Класична доба української філософії 141.5 KB
  Світова та українська культура. Вкажіть основні риси українського світогляду. Що притаманно для філософської думки Київської Русі Перерахуйте твори часів Київської Русі які відображали світогляд. Що повинні були написати на могильному камені Сковороди Світ ловив мене та не впіймав.
52971. Впорядкування даних, пошук даних за зразком в таблиці. Використання фільтрів для пошуку даних в базі даних 12.72 MB
  Перевірка домашнього завдання. Ми продовжуємо вивчати тему «Бази даних. Система управління базами даних Access». На попередніх уроках ми вчилися проектувати БД, розглядали різні способи створення таблиць, заповнювали таблиці конкретними даними.