80197

Элементная база линейных цепей

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Таким образом анализируемая RС-цепь при малых τα может осуществлять линейную операцию дифференцирования поданного на нее сигнала. Чтобы определить частотный коэффициент передачи дифференцирующей цепи, запишем комплексную амплитуду тока

Русский

2015-02-16

163.43 KB

1 чел.

Элементная база линейных цепей.

Линейные четырехполюсники

По функциональному назначению линейные цепи делят на

а) дифференцирующие цепи и устройства;

б) интегрирующие;

в) частотно-избирательные цепи;

г) линейные усилители и фильтры.

Дифференцирующая цепь - последовательной электрическая RC-цепь, на входе которой действует напряжение uBX(t), а выходное напряжение uBЫX(t), снимается с резистора R

Дифференцирующая цепь: а — схема; б — амплитудно-частотная характеристика (АЧХ)

На основании второго закона Кирхгофа

i(t) -мгновенное значение напряжения для всей линейной цепи

Продифференцируем по времени обе части этого соотношения:

Умножив и поделив первое слагаемое в правой части на R и учитывая, что uBЫX(t)=i(t)R, получим

Обозначим – постоянная времени цепи, получим

Если постоянная времени настолько мала, что выполняется условие

то окончательно получим

Таким образом  анализируемая RС-цепь при малых τα может осуществлять линейную операцию дифференцирования поданного на нее сигнала.

Чтобы определить частотный коэффициент передачи дифференцирующей цепи, запишем комплексную амплитуду тока:

Выразив комплексную амплитуду выходного напряжения через ток UBЫX = IR, находим частотный коэффициент передачи

Модуль частотного коэффициента передачи,

 

нижняя граничная частота полосы пропускания (мощность выходного сигнала убывает в 2 раза)

верхнюю частоту спектральной плотности прямоугольного видеоимпульса принято приближенно ограничивать значением ωИ = 2π/τИ. Тогда условие для соотношения частот ωН > ωИ можно записать в виде τα << τИ /(2π), или как τα<<τИ .

При больших отношениях ταИ линейную электрическую RC-цепъ применяют как разделительную, разделяющую цепи переменного и постоянного токов, а при малых ταИ — как дифференцирующую.

Интегрирующая цепь - последовательная электрическая RC-цепь, на входе которой действует напряжение uBX(t), а выходное напряжение uBЫX(t), снимается с емкости С.

Интегрирующая цепь: а — схема; б — амплитудно-частотная характеристика (АЧХ)

Используя аналогию с формулой для дифференцирующей цепи, запишем

Если τα настолько велика, что

То

Интегрируя получаем

Для определения частотного коэффициента передачи интегрирующей цепи запишем комплексную амплитуду тока через комплексное входное напряжение

Т.к.

Получим

Определив модуль К(ω) находим АХЧ

Из условия К(ωВ)=1/(2)0,5 можно определить верхнюю граничную частоту полосы пропускания интегрирующей цепи

Из графика для К(ω) следует, что интегрирующая цепь не пропускает высокочастотные составляющие спектра входного сигнала, поэтому в радиоэлектронных устройствах их используют в качестве так называемых сглаживающих (smoothing), или низкочастотных, фильтров.

Резонансные цепи – предназначены для выделения полезного сигнала из смеси побочных сигналов и шумов.

Последовательный колебательный контур.

Запишем полное входное сопротивление (импеданс — устаревшее) контура

Приняв Z=0, находим резонансную частоту контура (формула Томсона)

 

На резонансной частоте сопротивление контура актичвно и равно R. На любой другой частоте

где ρ –характеристическое сопротивление контура (сопротивление емкости или индуктивности на частоте резонанса).

Преобразуем Z (импеданс) к виду

Можно показать, что  модуль частотного коэффициента передачи для малой абсолютной расстройки частоты контура относительно частоты входного сигнала. ∆ω = ω  - ωР имеет вид

Данная функция представляет собой АЧХ контура, графически отображаемую в виде резонансной кривой.

Полоса пропускания контура определяется из условия КI(ω)≥ 1/(2)0,5. исторически её принято записывать через 2∆ωР 

Так как на частоте резонанса напряжения на контуре UВХ= IРR, Uc =IР ρ,  то

Итак, при настройке контура в резонанс амплитуда напряжения на конденсаторе (или индуктивности) в Q раз больше амплитуды входного напряжения. Поэтому резонанс в последовательном контуре называют резонансом напряжений.

Параллельный колебательный контур. Такой контур состоит из параллельно соединенных индуктивности L и емкости С, а в цепь индуктивности включено сопротивление ее потерь R.

Полное входное сопротивление контура

Аналитически АЧХ параллельного контура отражается зависимостью нормированного по резонансному сопротивлению модуля входного сопротивления от величины абсолютной расстройки

Фазо-частотная характеристика (ФЧХ) параллельного контура определяется следующим выражением

Частотный коэффициент передачи контура по току нетрудно определить, вычислив отношение тока емкости (индуктивности) к входному току. На резонансной частоте этот параметр выразится простой формулой

 

Итак, на резонансной частоте ток в параллельном контуре в Q раз больше входного тока. Поэтому говорят о резонансе токов в параллельном контуре. Полоса пропускания параллельного контура определяется той же формулой, что  и последовательного.

Связанные контуры. Позволяют существенно повысить частотную избирательность радиотехнических устройств, в которых удается получать близкую к идеальной (прямоугольной) форму АЧХ. Простейшими многоконтурными частотно-избирательными цепями являются два связанных колебательных контура.

Одним из основных параметров связанных контуров является коэффициент связи КСВ. Для связанных контуров с индуктивной связью КСВ = M/L, а с емкостной —

КСВ = С/(С + ССВ). Наиболее же важным параметром обычно считают фактор связи 

Ас = КСВ Q. При Ас < 1 связь называют слабой, а при Ас>1сильной.

АЧХ связанных контуров определяется модулем коэффициента передачи К(ω)

Колебательные системы из большого числа связанных контуров называются фильтрами сосредоточенной селекции. С их помощью удается получить амплитудно-частотную характеристику, еще более приближающуюся к прямоугольной форме.

АЧХ индуктивно связанных контуров

Неискажающая передача сигналов через линейные цепи. Рассмотрим идеальный линейный четырехполюсник, частотный коэффициент передачи которого теоретически определяется функцией вида

где КН=К(ω) – постоянный коэффициент; tС=φ(ω)/ ω – некоторый момент времени (текущее время). Видим, что АЧХ равномерна, а ФЧХ – линейна в бесконечной полосе частот

Можно показать, что колебание на выходе идеального линейного четырехполюсника с точностью до постоянного коэффициента КН повторяет смещенный на определенное время входной сигнал.

идеальный линейный четырехполюсник, обладающий равномерной АЧХ и линейной ФЧХ в бесконечной полосе частот, теоретически осуществляет передачу радиотехнических сигналов без искажений. В практических линейных цепях даже в полосе пропускания АЧХ не всегда равномерна, а АЧХ — не строго линейна. Но важной особенностью линейных цепей является то, что при прохождении через них сигналов не нарушается форма ни одной гармонической составляющей, а может изменяться лишь их амплитуда и начальная фаза. Поэтому такие искажения в линейных цепях относят к классу линейных (иначе, частотных).


 

А также другие работы, которые могут Вас заинтересовать

42595. Метод измерения Рн прибором п-201 40.5 KB
  Цель работы: ознакомится с принципом действия и устройством промышленного Рнметра выполнить проверку ознакомится с устройством имитатора электронной системы. Схема собранная на преобразователе П201 назначение приборов П201 преобразовает сигнал с электродов Rt –замеряет температуру среды И02 иммитаор для проверки преобразователя М325 Рнметр предел измерений от 2 до12 МСР63 блок сопротивлений Соединительная схема протокол поверки: порядок работы проверку проверку производят при нормальных условиях T20C влажность...
42596. Геометрии токарных резцов 175.5 KB
  Наименование резца: А тип резца – проходной Б расположение главной режущей кромки – правый В форма и расположение головки резца – прямой Г способ крепления режущей части – напайной 2 Наименование резца: А тип резца – подрезной Б расположение главной режущей кромки – правый В форма и расположение головки резца – отогнутый Г способ крепления режущей части – напайной Результаты измерений Измеряемые элементы Обозначение Величина ВК81 ВК8 Главный передний угол γ 750 20 Передний угол фаски γ _ _ Главный задний угол α 130 1650 Угол...
42597. Методологія розробки програмних продуктів та великих програмних систем 333.5 KB
  2010 18:00 77 Общий сбор scrum meeting 71.2010 9:00 78 Общий сбор scrum meeting 1 .2010 9:00 79 Общий сбор scrum meeting 2 .2010 9:00 80 Общий сбор scrum meeting 3 .
42598. Метод измерения Рн-прибором п-201с применением измерительных электродов 37 KB
  Березниковский филиал Пермского Государственного Технического Университета лабораторная работа №3 По курсу: методика автоматического анализа Тема: метод измерения Рнприбором п201с применением измерительных электродов Выполнил: студент гр. Цель работы: произвести измерение с помощью электродов сравнить данные с приборов с истинным значением сделать вывод. назначение приборов П201 преобразовывает сигнал с электродов Rt –замеряет температуру среды М325...
42599. Изучение конструкции и геометрических параметров спиральных сверл 517 KB
  Угол наклона винтовой канавки а расчетный б по отпечатку в по угломеру ЛМТ ω1 ω2 ω3 280 270 270 9. Угол при вершине сверла Угол при режущей кромки 1 Угол при режущей кромки 2 2φ φ1 φ2 3440 34020’ 34020’ 11. Угол наклона поперечной режущей кромки: по угломеру ψ 5310 13. Главный задний угол в осевой плоскости: rx=09r rx=04r 108 48 16.
42600. ФИЗИОЛОГИЯ СОСУДИСТОЙ СИСТЕМЫ. КРОВЯНОЕ ДАВЛЕНИЕ И ПУЛЬС 220.37 KB
  Кровяное давление как основной показатель гемодинамики. Факторы, обуславливающие величину артериального и венозного давления. Методы исследования. Артериальный и венный пульс, их происхождение. Анализ сфигмограммы и флебограммы.
42601. Конструктивные элементы и геометрические параметры фрез 150.5 KB
  Фреза — инструмент с несколькими режущими лезвиями (зубьями) для фрезерования. Виды фрез по геометрии(исполнению) бывают — цилиндрические, торцевые, червячные, концевые, конические и др. Виды фрез по обрабатываемому материалу - дерево,сталь, чугун, нержавеющая сталь, закаленная сталь, медь, алюминий, графит. Материал режущей части — быстрорежущая сталь, твёрдый сплав, минералокерамика, металокерамика или алмаз, массив кардной проволоки.
42602. Классификация токарных резцов 82 KB
  Характеристика резцов Материал режущей части Назначение Форма и расположения головки Направления подачи Конструкция Характер обработки Форма передней поверхности 1 ВК 6 Проходной прямой левый Прямая Левое Напайная Черновая Плоская с положительным передним углом 2 ВК 8 Подрезной торцевой левый Прямая Левое Напайная Черновая Плоская с положительным передним углом 3 ВК 8 Подрезной торцевой левый Отогнутая Левое Напайная Черновая Плоская с положительным передним углом 4 Проходной прямой левый Отогнутая Правое Цельная Черновая Плоская с...
42603. Формы в HTML-документах 80 KB
  enctype Атрибут указывающий способ кодирования содержимого формы для передачи программеобработчику. type Атрибут type определяет вид элемента INPUT. Значения атрибута type элемента INPUT: type= text по умолчанию Создание поля ввода в котором можно сразу после загрузки страницы разместить произвольный текст используя атрибут vlue. Например INPUT nme= T1 vlue= Родион type= pssword Создание поля для ввода пароля.