80199

Цифровая модуляция. Виды цифровой модуляции

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

число различных его элементов которые преобразуются в последовательность элементов посылок сигнала {Unt} путем воздействия кодовых символов на высокочастотное несущее колебание UНt. Долгое время не находила практического применения изза сложности восстановления в приемнике опорного несущего колебания строго синфазного с несущей частотой принимаемого сигнала. Так как на практике при приеме сигнала сложно определить абсолютное значение начальной фазы то проще определять относительный фазовый сдвиг между двумя соседними символами....

Русский

2015-02-16

80.5 KB

88 чел.

Цифровая модуляция

Цифровая модуляция процесс преобразования цифровых символов в сигналы, совместимые с характеристиками канала связи. Каждому возможному значению передаваемого символа ставятся в соответствие некоторые параметры аналогового несущего колебания.

Манипуляция - способ цифровой или импульсной модуляции, когда параметры несущего колебания меняются скачкообразно.

При цифровой модуляции используют чаще всего дискретные последовательности двоичных символов — двоичных кодов. Закодированный первичный аналоговый сигнал e(t), представляющий собой последовательность кодовых символов {еn} = еn(k)  (n = О, 1, 2, 3, ... — порядковый номер символа;  — номер позиции кода; m — основание кода, т. е. число различных его элементов, которые преобразуются в последовательность элементов (посылок) сигнала {Un(t)} путем воздействия кодовых символов на высокочастотное несущее колебание UН(t). Как правило, используют двоичные коды т.е. m=2. Обычно посредством модуляции частота или фаза несущего в радиоимпульсе изменяется по закону, определяемому цифровым кодом.

 

Наиболее известны следующие виды цифровой модуляции:

  1.  Невозвращающийся в нуль код - NRZ (Non Return to Zero). Является простейшим линейным кодом, широко применяемым на практике. Существуют две разновидности этого кода — униполярный и биполярный NRZ-коды. В униполярном NRZ-коде логической единице соответствует прямоугольный импульс положительной полярности, а логическому нулю — нулевое напряжение (пауза). В биполярном NRZ-коде логической единице соответствует прямоугольный импульс положительной полярности, а логическому нулю — прямоугольный импульс отрицательной полярности. Положительное или отрицательное напряжение на выходе кодера сохраняется неизменным в течение длительности символа, что и определяет термин «невозвращающийся в нуль» код. Длительность импульсов и пауз в NRZ-кодах равна длительности одного символа (бита) информации (рис. 1, а, б).
  2.  Амплитудная манипуляция (АМн; иначе ИКМ-АМ, или цифровая амплитудная модуляция — ЦАМ; amplitude shift keying — ASK). Битовому символу «1» при ИКМ-АМ (рис. 2, в) соответствует передача несущего колебания в течение времени τИ (длительность посылки), символу «0» — отсутствие колебания (пауза) на таком же временном интервале.
  3.  Частотная манипуляция (ЧМн; иначе ИКМ-ЧМ, или цифровая частотная модуляция — ЦЧМ; frequency shift keying — FSK). При ИКМ-ЧМ (рис. 1, г) передача несущего с частотой f0 соответствует символу «1», а передача колебания с частотой f1 — символу «0».
  4.  Фазовая манипуляция  (ФМн; иначе ИКМ-ФМ, или цифровая фазовая модуляция — ЦФМ; phase shift keyingPSK). При двоичной ИКМ-ФМ (рис. 1, д) фаза несущей меняется на 180° при каждом переходе символов от «1» к «0» и от «0» к «1». Долгое время не находила практического применения из-за сложности восстановления в приемнике опорного («несущего») колебания, строго синфазного с несущей частотой принимаемого сигнала.
  5.  Относительная фазовая (дифференциальная; фазоразностная) манипуляция (ОФМ; differential phase shift keyingDPSK), часто называемой многопозиционной амплитудно-фазовой манипуляцией (рис. 1, е). На практике цифровую фазовую манипуляцию применяют при небольшом числе возможных значений начальной фазы — как правило, 2, 4 или 8. Так как на практике при приеме сигнала  сложно определить абсолютное значение начальной фазы, то проще определять относительный фазовый сдвиг между двумя соседними символами. Поэтому обычно используется ОФМ при которой  в зависимости от значения информационного элемента изменяется только фаза сигнала при неизменной амплитуде и частоте, при этом фазу канального сигнала отсчитывают не от некоторого эталона, а от фазы предыдущего элемента. На рис 1. видно, что изменение фазы несущего сигнала на 1800 происходит при каждом «приходе» логической «1» - символ «О» передается отрезком синусоиды с начальной фазой предшествующего элемента сигнала, а символ «1» — таким же отрезком с начальной фазой, отличающейся от начальной фазы предшествующего элемента на 180°. При ОФМ передача сообщения начинается с посылки одного не несущего передаваемой информации элемента, который служит лишь опорным (эталонным) сигналом для сравнения фазы последующего элемента. Каждому информационному биту ставится в соответствие не абсолютное значение фазы, а ее изменение относительно предыдущего значения.
  6.  В цифровом телевидении для передачи по спутниковым трактам и в наземном телевещании при тяжелых условиях приема используется двукратная, или четырехфазная ОФМ (ОФМ-4; другое название — квадратурная относительная фазовая модуляция — КОФМ; англ. — Quadrature phase shift keying — QPSK). Модуляция ОФМ-4 (QPSK) обеспечивает необходимый компромисс между скоростью передачи информации и помехоустойчивостью системы и применяется как самостоятельно, так и в комбинациях с другими методами. Этот вид модуляции основан на передаче четырех сигналов, каждый из которых несет информацию о двух битах (дибите) исходной двоичной последовательности. Обычно используется два набора фаз: в зависимости от значения дибита (00, 01,10 или 11) фаза сигнала может измениться на О, 90, 180, 270 или 45, 135, 225, 315° соответственно. При этом, если число кодируемых бит более трех (8 позиций поворота фазы), резко снижается помехоустойчивость ОФМ. Потому для высокоскоростной передачи данных ОФМ использовать не рекомендуется.

Рис. 1. Формы сигналов при различных видах цифровой модуляции двоичным кодом: а — униполярный код; б — биполярный код; в — ИКМ-АМ;

г — ИКМ-ЧМ; д — ИКМ-ФМ; е — ОФМ

Многопозиционные сигналы. Эффективность систем передачи цифровых сообщений можно существенно повысить путем использования многопозиционных (многоуровневых) сигналов, которые можно применять при большой мощности сигнала без риска увеличить вероятность ошибки при определении значения принимаемого сигнала. Увеличение числа позиций, или уровней, позволяет увеличить удельную скорость модуляции, но лишь за счет увеличения мощности излучаемого колебания. То же самое можно сказать и о выборе корректирующих кодов. Выбор сигналов и кодов в этих случаях является определяющим для построения высокоэффективных кодемов (согласованных между собой кодеков и модемов).

Рис.2. Формирование четырехпозиционного сигнала:

а — передаваемый первичный сигнал; б — четырехпозиционный сигнал

Формирование четырехпозиционного сигнала показано на рис. 2. Пары соседних значений двоичных данных (длительность каждого символа τи) передаваемого первичного сигнала u1(t) (рис. 2, а) определяют один из четырех уровней, который занимает сигнал u2(t) (рис. 2, б). Пара двоичных символов 00 соответствует уровню (амплитуде) 0, пара 01 — уровню 1, пара 10 — уровню

2 и пара 11 — уровню 3. Сигнал u2(t)  меняется в 2 раза реже, чем исходный u1(t), для его передачи требуется в 2 раза меньшая полоса частот, следовательно, использование четырехпозиционного сигнала позволяет увеличить удельную скорость передачи в 2 раза. Но надо помнить, что применение многопозиционных сигналов связано со значительным увеличением их мощности.


 

А также другие работы, которые могут Вас заинтересовать

36903. Разработка приложений с разветвляющимися алгоритмами 359 KB
  Lbel1 Cption При х = Lbel2 Cption Функция вычисляется по формуле: Lbel3 Cption Получен результат Y = Lbel4 Cption Lbel5 Cption Лабораторная работа 2.Вариант 37 Text1 Text Text2...
36904. Изучение основных явлений поляризации света 483 KB
  Изучение основных явлений поляризации света. Цель работы: Получение и исследование поляризованного света и исследование свойств обыкновенных и необыкновенных лучей полученных с помощью двояко преломляющего кристалла. Принципиальная схема установки или её главных узлов: 1 упражнение: 2 упражнение: ИС источник света; ИС источник света; П поляроид 1поляризатор; Д...
36905. Изучение физических явлений, лежащих в основе работы полупроводникового фотоэлемента с запирающим слоем, определение зависимости фототока от освещенности, снятие ширины запрещенной зоны полупроводника 713 KB
  Цель работы: Изучение физических явлений лежащих в основе работы полупроводникового фотоэлемента с запирающим слоем определение зависимости фототока от освещенности снятие ширины запрещенной зоны полупроводника. На рисунке выше Ес энергия дна свободной зоны Ев энергия потолка валентной зоны; Fм Fп уровни Ферми металла и полупроводника Ам Ап работы выхода электрона из металла и полупроводника. Если уровень Ферми изолированного металла Fм лежит выше уровня Ферми полупроводника Fп т. Ам Ап то в первый момент их...
36906. Измерение холловской разности потенциалов в полулроводниковой пластине и определение концентрации, подвижности и знака носителей заряда, участвующих в токе 294.5 KB
  Эффект Холла в полупроводниках. Основные теоретические положения к данной работе основополагающие утверждения: формулы схематические рисунки: Эффект Холла заключается в возникновении поперечной разности потенциалов при пропускании тока через металлическую или полупроводниковую пластинку помещенную в магнитное поле направленное под некоторым углом к направлению тока. Классическая...
36907. Подтверждение боровской теории строения водородоподобных атомов 255.5 KB
  Основные теоретические положения к данной работе основополагающие утверждения: формулы схематические рисунки: В основе теории Бора лежат следующие постулаты: Первый постулат Бора постулат стационарных состояний: существуют некоторые стационарные состояния атома находясь в которых он не излучает энергии. Второй постулат Бора правило квантования орбит утверждает что в стационарном состоянии атома электрон двигаясь по круговой орбите должен иметь квантованные значения момента импульса удовлетворяющие условию где п = 1; 2;...
36908. Изучение процессов генерации и рекомбинации неравновесных носителей заряда в твердых телах при возбуждении их светом, экспериментальная проверка кинетики затухания рекомбинационной люминесценции при наличии центров захвата(ловушек) 658 KB
  Таблицы и графики Результаты измерений и расчетов: tc I1 мА I2 мА I3 мА I4 мА I5 мА Icp мА y = 10 0292 0284 0305 0293 0290 0293 0306 15 0264 0260 0265 0263 0261 0263 0379 20 0237 0238 0241 0243 0235 0239 0446 25 0220 0219 0216 0225 0228 0222 0501 30 0210 0209 0210 0203 0220 021 0543 35 0196 0192 0190 0195 0193 0193 061 40 0187 0185 0180 0179 0182 0183 0653 50 0170 0165 0165 0167 0170 0167 073 60 0158 0154 0156 0153 0154 0155 0796 70 0149 0147 0143 0144 0146...
36909. Кластерный анализ. Агломеративные методы 16.97 KB
  В качестве выбора нового расстояния между кластерами рассмотреть: 1Метод дальнего соседа 2Метод ближнего соседа. 3 Используем метод дальнего соседа. 4 Используем метод ближнего соседа. Решение поставленной задачи: 1Центрируем и нормируем: 2Рассчитаем матрицу расстояний: 1 2 3 4 5 6 Далее поскольку матрицы будут симметричными будут записаны полученные данные только над главной диагональю 3По методу...
36910. МОДЕЛИРОВАНИЕ ЗВЕНЬЕВ АВТОМАТИЧЕКСКИХ СИСТЕМ 346.5 KB
  1 Безынерционное звено Рис. 2 Интегрирующее звено Рис. 3 Апериодическое звено 1 порядка Рис. 4 Колебательное звено Переходные ht и передаточные Wp характеристики звеньев имеют вид: Безынерционное звено Wp=k Интегрирующее звено Wp=k p Апериодическое звено Wp=k Tp1 Колебательное звено Wp=k1 T2p22k2Tp1...
36911. Файлы и папки 185 KB
  Скопируйте этот файл с заданием в свою сетевую папку на studdc1 Загрузить программу Проводник. Создайте на своем рабочем столе структуру папок: Для этого щелкните правой кнопкой мыши для вызова контекстного меню выберите команду Создать Папку. Откройте текстовый файл и наберите текст: Переместите файл МОЙ ТЕКСТ в папку SUB. В любой папке доступной на Вашем компьютере выберите три файла вразброс используя для выделения клавишу Ctrl и скопируйте их в папку SUB.