80204

Модулированные сигналы. Радиосигналы с аналоговыми видами модуляции

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Модулированные сигналы Под модуляцией понимают процесс медленный по сравнению с периодом несущего колебания при котором один или несколько параметров несущего колебания изменяют по закону передаваемого сообщения. Получаемые в процессе модуляции колебания называют радиосигналами. В современных цифровых системах передачи информации широкое распространение получила квадратурная амплитуднофазовая или фазоамплитуд ная ФАМ; mplitude phse modultion...

Русский

2017-09-27

192.5 KB

4 чел.

Лекция № 6 Модулированные сигналы

Под модуляцией понимают процесс (медленный по сравнению с периодом несущего колебания), при котором один или несколько параметров несущего колебания изменяют по закону передаваемого сообщения. Получаемые в процессе модуляции колебания называют радиосигналами. В зависимости от того, какой из названных параметров несущего колебания подвергается изменению, различают два основных вида аналоговой модуляции: амплитудную и угловую. Последний вид модуляции, в свою очередь, разделяется на частотную и фазовую. В современных цифровых системах передачи информации широкое распространение получила квадратурная (амплитудно-фазовая, или фазоамплитуд- ная — ФАМ; amplitude phase modulation) модуляция, при которой одновременно изменяются и амплитуда и фаза сигнала. Этот тип модуляции относят как к аналоговым, так и цифровым видам.

В радиосистемах часто применяются и будут применяться различные виды импульсной и цифровой модуляции, при которой радиосигналы представляются в виде так называемых радиоимульсов.

Радиосигналы с аналоговыми видами модуляции В процессе амплитудной модуляции несущего колебания (1)

его амплитуда должна изменяться по закону: (2)

где UH — амплитуда несущей в отсутствие модуляции; ω0 — угловая частота; φ0 — начальная фаза; ψ(t) = ω0+ φ0 — полная (текущая или мгновенная) фаза несущей; kА — безразмерный коэффициент пропорциональности; e(t) —  модулирующий сигнал. UH(t) в радиотехнике принято называть огибающей амплитудно-модулированного сигнала (АМ-сигнала).

Подставив (2) в (1) получим общую формулу АМ- сигнала (3)

Однотональная амплитудная модуляция если модулирующий сигнал — гармоническое колебание (4)

где Е0 — амплитуда; Ω = 2π/Т1 = 2πF — угловая частота модуляции; F —  

циклическая частота модуляции; Т1 — период модуляции; θ0 — начальная фаза. 

Подставив формулу (4) в соотношение (3), получим выражение для АМ-сигнала (5)

Обозначив через ∆U = kAE0- максимальное отклонение амплитуды АМ- сигнала от амплитуды несущей UH и проведя несложные выкладки, получим (6)

где

— коэффициент или глубина амплитудной модуляции.

Спектр АМ-сигнала. Применив в выражении (5) тригонометрическую формулу произведения косинусов, после несложных выкладок получим (7) 

Из формулы (7) видно, что при однотональной амплитудной модуляции спектр АМ-сигнала состоит из трех высокочастотных составляющих. Первая из них представляет собой исходное несущее колебание с постоянной амплитудой UH и частотой с ω0 . Вторая и третья составляющие характеризуют новые гармонические колебания, появляющиеся в процессе амплитудной модуляции и  отражающие передаваемый сигнал. Колебания с частотами ω0 + Ω и ω0 - Ω называются соответственно верхней (upper sideband — USB) и нижней (lower sideband — LSB) боковыми составляющими.

Реальная ширина спектра АМ-сигнала при однотональной модуляции (8)

(9)

На практике однотональные АМ-сигналы используются либо для учебных, либо для исследовательских целей. Реальный же модулирующий сигнал имеет сложный спектральный состав. Математически такой сигнал, состоящий из N гармоник, можно представить тригонометрическим рядом N (10)

Здесь амплитуды гармоник сложного модулирующего сигнала Ei  произвольны, а их частоты образуют упорядоченный спектр Ω1 < Ω2 < ...< Ωi < ...< ΩN. В отличие от ряда Фурье частоты Ωi не обязательно кратны друг другу. Подставляя (10) в (3), после несложных преобразований, получим выражение АМ-сигнала с начальной фазой несущего ф0 = О (11)

(12)

Совокупность парциальных (частичных) коэффициентов модуляции. Эти коэффициенты характеризуют влияние гармонических составляющих модулирующего сигнала на общее изменение амплитуды высокочастотного колебания. Воспользовавшись тригонометрической формулой произведения двух косинусов и проделав несложные преобразования, запишем (11) в виде (13)

Рис. 2. Спектральные диаграммы при модуляции сложным сигналом:

а — модулирующего сигнала; б — АМ-сигнала

Ширина спектра сложного АМ-сигнала равна удвоенному значению наивысшей частоты в спектре модулирующего сигнала ΩN, т. е.  (14)

Частотная модуляция

При частотной модуляции (frequency modulation; FM) мгновенное значение несущей частоты ω(t) связано с модулирующим сигналом e(t) зависимостью (15)

 

здесь kЧ — размерный коэффициент пропорциональности между частотой и напряжением, рад/(В-с).

Полную фазу ЧМ-сигнала в любой момент времени t определим путем интегрирования мгновенной частоты, выраженной через формулу (15),

(16)

 

- максимальное отклонение частоты от значения ω0, или девиация частоты (frequency deviation) при частотной модуляции;

— максимальное отклонение от текущей фазы ω0t  или девиация фазы несущего колебания называется индексом частотной модуляции (index of frequency modulation). Данный парамер определяет интенсивность колебаний начальной фазы радиосигнала.

С учетом полученных соотношений (1) и (16) частотно-модулированный сигнал запишется в следующем виде:

Спектр ЧМ-сигнала при однотональной модуляции. Преобразуем полученное выражение (17)

Спектр ЧМ-сигнала при  m«1 (такую угловую модуляцию называют узкополосной). В этом случае имеют место приближенные равенства: (18)

Подставив формулы (18) в выражение (17), после несложных математических преобразований получим (при начальных фазах модулирующего и несущего колебаний θ0 = 0 и φ0 = 0): (19)

Видим, что по аналитической записи спектр ЧМ-сигнала при однотональной модуляции напоминает спектр АМ- сигнала и также состоит из несущего колебания и двух боковых составляющих с частотами (ω0+ Ω) и (ω0- Ω) причем и амплитуды их рассчитываются аналогично (только вместо коэффициента амплитудной модуляции М в формуле для ЧМ-сигнала фигурирует индекс угловой модуляции m). Но есть и принципиальное отличие, превращающее амплитудную модуляцию в частотную, знак минус перед одной из боковых составляющих.

Спектр ЧМ-сигнала при m> 1.  Из математики известно (20) (21)

где Jn(m) — функция Бесселя 1 -го рода n-го порядка.

В теории функций Бесселя доказывается, что функции с положительными и отрицательными индексами связаны между собой формулой (22)

Ряды (20) и (21) подставим в формулу (17), а затем заменим произведение косинусов и синусов полусуммами косинусов соответствующих аргументов. Тогда, с учетом (22), получим следующее выражение для ЧМ-сигнала (23)

Итак, спектр ЧМ-сигнала с однотональной модуляцией при индексе  

модуляции m > 1 состоит из множества высокочастотных гармоник: несущего колебания и бесконечного числа боковых составляющих с частотами ω0+ nΩ. и ω0-nΩ, расположенными попарно и симметрично относительно несущей частоты ω0.

При этом, исходя из (22), можно отметить, что начальные фазы боковых колебаний с частотами ω0+ nΩ. и ω0-nΩ совпадают, если  m — четное число, и отличаются на 180°, если m — нечетное. Теоретически спектр ЧМ- сигнала (так же и ФМ-сигнала) бесконечен, однако в реальных случаях он ограничен. Практическая ширина спектра сигналов с угловой модуляцией

ЧМ- и ФМ-сигналы, применяемые на практике в радиотехнике и связи, имеют индекс модуляции m>> 1, поэтому

Полоса частот ЧМ-сигнала с однотональной модуляцией равна удвоенной девиации частоты и не зависит от частоты модуляции.

Сравнение помехоустойчивости радиосистем с амплитудной и угловой модуляцией. Следует отметить, что радиосигналы с угловой модуляцией имеют ряд важных преимуществ перед амплитудно-модулированными колебаниями.

1. Поскольку при угловой модуляции амплитуда модулированных колебаний не несет в себе никакой информации и не требуется ее постоянства (в отличие от амплитудной модуляции), то практически любые вредные нелинейные изменения амплитуды радиосигнала в процессе осуществления связи не приводят к заметному искажению передаваемого сообщения.

2. Постоянство амплитуды радиосигнала при угловой модуляции позволяет полностью использовать энергетические возможности генератора несущей частоты, который работает при неизменной средней мощности колебаний.


Рис. 1
. Амплитудная модуляция:

а — модулирующий сигнал; б — несущее колебание; в — АМ-сигнал;

г - е — соответствующие спектры

Рис. 3. Частотная однотональная модуляция:

а — несущее колебание; б — модулирующий сигнал; в — ЧМ-сигнал

Рис. 4. Спектральная диаграмма ЧМ-сигнала при m<<1

Рис. 5. Спектр простейшего ЧМ-сигнала


 

А также другие работы, которые могут Вас заинтересовать

21521. Организация медицинского обеспечения войск при передвижении 104 KB
  Условия деятельности медицинской службы на марше и во встречном бою. Особенности проведения марша предъявляют к медицинской службе полка определённые требования которые нельзя не учитывать при организации его медицинского обеспечения. Возможность применения противником авиации и средств массового поражения по маршевым колоннам; вероятность воздействия на них воздушных десантов диверсионных и разведывательных групп всё это обуславливает необходимость постоянной готовности медицинской службы к оказанию помощи независимо от...
21522. Медицинские части и учреждения объединений 207 KB
  Использование имеющихся сил и средств для эвакуации раненых и больных из мпп и районов массовых санитарных потерь в омо и омедб а также эвакуация раненых и больных своим приданным санитарным транспортом в военные полевые госпитали госпитальной базы пгб. Возможность по эвакуации более 1700 раненых и больных за один рейс; В. На отдельный медицинский отряд возлагаются следующие задачи:  эвакуация раненых и больных на себя из мпп а в ряде случаев непосредственно из очагов массовых санитарных потерь;  прием регистрация медицинская...
21523. Медицинская служба ВС РФ в чрезвычайных ситуациях мирного времени 91 KB
  Она характеризующуюся неопределенностью и сложностью принятия решений значительным экологическим ущербом человеческими жертвами необходимостью помощи извне и вследствие этого крупных людских материальных и временных затрат на проведение эвакуационноспасательных работ и ликвидацию последствий этих аварий катастроф и бедствий. Перед медицинскими формированиями Министерства Обороны работающими совместно со службой экстренной медицинской помощи Министерства Здравоохранения стоят аналогичные с ней задачи а именно: восстановление...
21524. Понятие о военной и экстремальной медицине 252 KB
  Необходимые базы обеспечивающие развитие теории и совершенствование практики здравоохранения ВС является военномедицинской организацией которая представлена специально предназначенными для этого силами и средствами объединёнными Вооруженных Сил в специализированную систему действующую на основе определённых принципов и правил военномедицинскую службу. Следовательно в своём становлении и развитии военная медицина базируется не только на общих положениях медицинской но также в не меньшей степени и военной науки. Вместе с тем...
21525. Задачи и организация медицинской службы Вооруженных Сил Российской Федерации в военное время 110.5 KB
  Задачи и организация медицинской службы Вооруженных Сил Российской Федерации в военное время Учебные вопросы: 1. Основные задачи медицинской службы Российской Армии в военное время их краткое содержание и значение. Перед медицинской службой стоят следующие основные задачи: Обеспечение высокой боевой готовности сил и средств медицинской службы. Проведение мероприятий медицинской службы по защите личного состава войск а также защиты соединений частей и учреждений медицинской службы от оружия массового поражения.
21526. Санитарные потери войск 145.5 KB
  Принимая во внимание поражающую способность современного огнестрельного оружия и высокую степень бронезащищённности войск значительная часть личного состава укрыта за бронёй танков бронетранспортёров боевых машин пехоты следует ожидать увеличения удельного веса закрытых травм в особенности закрытых травм мозга которые могут составить 57 общего числа санитарных потерь от огнестрельного оружия. Таким образом следующей особенностью поражающего действия ядерного оружия надо считать изменчивость структуры причиняемых им потерь. Величина...
21527. ОТРАВЛЕНИЯ ТЕХНИЧЕСКИМИ ЖИДКОСТЯМИ: клиника, диагностика, лечение 131.5 KB
  Многие из технических жидкостей высокотоксичны и при определенных условиях могут вызвать как острые так и хронические отравления личного состава. Наиболее часто встречаются и тяжело протекают острые отравления такими веществами как этиленгликоль и его производные хлорированные углеводороды дихлорэтан четыреххлористый углерод трихлорэтилен метиловый спирт. Острые отравления ядовитыми техническими жидкостями это трудный для диагностики и сложный для лечения раздел клинической токсикологии имеющий большую актуальность и важное...
21528. ОТРАВЛЕНИЯ ФИТОТОКСИКАНТАМИ 248.5 KB
  ВВЕДЕНИЕ Боевые фитотоксиканты БФТ фитотоксиканты боевого применения гербициды военного предназначения токсичные химические вещества предназначенные для поражения и уничтожения различных видов растительности с военными целями. Возможны поражения людей при вдыхании аэрозолей употреблении зараженных продуктов и воды. Производные дихлор и трихлорфеноксиуксусных кислот обладают сравнительно невысокой токсичностью но при действии в больших дозах могут наблюдаться тяжелые поражения смертельные отравления у человека возможны при...
21529. ОТРАВЛЯЮЩИЕ ВЕЩЕСТВА ОБЩЕТОКСИЧЕСКОГО ДЕЙСТВИЯ 126.5 KB
  Острые отравления: Руководство для врачей. НАГЛЯДНЫЕ ПОСОБИЯ Таблицы и слайды по теме: Отравления цианидами и монооксидом углерода. Известно также что в США применяется смертная казнь посредством отравления осужденных парами синильной кислоты в специальной камере. Могут быть и отравления цианидами вследствие употребления в пищу большого количества семян миндаля персика абрикоса вишни сливы и других растений семейства розовоцветных или настоек из их плодов.