80519

Режим роботи ЕОМ та їх особливості

Лекция

Информатика, кибернетика и программирование

Класифікація електронно обчислювальних машин персональних комп’ютерів. Класифікація електронно обчислювальних машин персональних комп’ютерів. Компютери класифікуються за сферою застосування конструктивним виконанням та іншими критеріями. Наприклад дотепер використовується така класифікація: суперЕОМ чи суперкомп\'ютери компютери загального призначення чи універсальні компютери або мейнфрейми minfrme робочі станції персональні компютери мобільні компютери.

Украинкский

2015-02-17

32.8 KB

0 чел.

Лекція 7. Режим роботи ЕОМ та їх особливості

План

1. Класифікація електронно обчислювальних машин, персональних комп’ютерів.

2. Архітектура ЕОМ.

3. Технології розв’язування задач за допомогою ЕОМ.

1. Класифікація електронно обчислювальних машин, персональних комп’ютерів.

Комп'ютери класифікуються за сферою застосування, конструктивним виконанням та іншими критеріями. Наприклад, дотепер використовується така класифікація: суперЕОМ, чи суперкомп'ютери, комп'ютери загального призначення, чи універсальні комп'ютери, або «мейнфрейми» (mainframe), робочі станції, персональні комп'ютери, мобільні комп'ютери. Засновник фірми Microsoft Білл Гейтс, людина, що багато в чому визначає напрямок розвитку комп'ютерної індустрії у світі, ввів таку класифікацію персональних комп'ютерів: сервери, настільні, портативні, кишенькові, ПК-кіоски й інтерактивні телевізори.

У наш час практично не існує відмінностей між технічними характеристиками комплектуючих і готових вузлів, з яких складають різні класи комп'ютерів. Основні розбіжності між класами визначаються кількістю, компонуванням і якістю комплектуючих, типом корпуса й екрана, розмірами, енергоспоживанням. Для апаратного забезпечення ГІС можуть використовуватися усі типи комп'ютерів, тобто:

- суперкомп'ютери;

- сервери;

- робочі станції;

- настільні персональні комп'ютери;

- мобільні комп'ютери.

Суперкомп'ютери. Сучасні ЕОМ цього класу характеризуються багатопроцесорною архітектурою і порівняно великими обсягами дискової та оперативної пам'яті. Ці комп'ютери призначені для складних і великих за обсягом наукових розрахунків, зокрема, для тривимірного моделювання різних гідрологічних, атмосферних і геологічних процесів у реальному режимі часу. Основними користувачами такого апаратного забезпечення є великі наукові інститути, що займаються вивченням навколишнього середовища, чи комерційні організації, наприклад, геологорозвідувальні фірми, що аналізують дані сейсмічної або геофізичної розвідки для визначення родовищ корисних копалин.

До складу комплектуючих таких комп'ютерів можуть входити 16-1024 процесорів і до декількох терабайт оперативної пам'яті, які працюють під керуванням спеціальної операційної системи типу UNIX чи SOLARIS. Корпуси суперкомп'ютерів оснащені спеціальними системами енергоживлення й охолодження. Найбільш відомі суперкомп'ютери фірми Cray, які є унікальними виробами вартістю в кілька мільйонів доларів США.

  Сьогодні все більшого поширення набувають розширювані (кластерні) обчислювальні системи, у яких над складним обчислювальним процесом під керуванням єдиної ОС одночасно працює кілька комп'ютерів. Для побудови таких кластерних систем розроблений спеціальний тип конфігурації комп'ютера, у якому немає клавіатури, миші, дисководів, монітора й інших засобів керування (тільки один чи кілька процесорів, оперативна і дискова пам'ять, мережна карта, блок енергопостачання й охолодження), корпус комп'ютера виконаний у вигляді плоского модуля стандартного розміру, що може вмонтовуватися в спеціальну шафу. Кілька десятків потужних комп'ютерів, що в настільному варіанті займали б велику залу, у такому вигляді займають одну-дві шафи. Доступ до такого комп'ютерного кластера можливий тільки по локальній мережі зі спеціальної службової машини, оснащеної монітором, клавіатурою і маніпулятором «миша».

Сервери. Сервер призначений для роботи в складі локальних чи розподілених обчислювальних систем, виконує певні функції для обслуговування інших комп'ютерів. Залежно від призначення сервери оснащуються наборами комплектуючих з різними технічними характеристиками.

  Найбільш поширеним типом цього класу є файл-сервер — високопродуктивний комп'ютер, що виконує функції центрального сховища даних будь-якої організації, наприклад, регіональної ГІС. По локальній мережі чи через Internet файл-сервер приймає запити користувачів, робить пошук даних і подає набори даних для обробки безпосередньо на сервери чи на комп'ютері користувача. Особливі вимоги висувають до забезпечення надійності, перешкодозахищеності, багаторазового резервного копіювання. Тут використовуються змінні накопичувачі даних високої ємності на магнітних дисках і стрічках (до 250 Гб), швидкісні мережні й Internet-з'єднання. Для обробки великої кількості запитів, що одночасно надходять, у серверах може одночасно працювати від двох до восьми потужних процесорів. При комплектації серверів використовуються найбільш продуктивні на визначений момент часу процесори, установлюються максимально можливі обсяги оперативної і дискової пам'яті, системи створення резервних копій на оптичних дисках.

Робочі станції. У різні періоди розвитку комп'ютерної техніки під терміном «робоча станція» розуміли різні типи комп'ютерів. У 70-80-ті pp. XX ст. робочі станції характеризувалися порівняно з малопотужними першими персональними комп'ютерами наявністю потужних процесорів, великими обсягами дискової й операційної пам'яті, наявністю декількох зовнішніх терміналів і засобів зв'язку з ними, багатозадачними операційними системами типу UNIX, SOLARIS та ін. У наш час під робочою станцією розуміють комп'ютер, конфігурація якого оптимізована для виконання певного класу завдань, наприклад, обробки графічних даних.

Найбільш відомі станції фірм SUN і Silicon Graphics для комп'ютерної графіки, у яких використовуються спеціальні фірмові процесори і відеокарти. Для введення просторових даних фірмою Intergraph у 1980-90-х pp. випускалися спеціалізовані картографічні станції, оснащені двома дисплеями для одночасного відображення картографічних і текстових даних і спеціальних консолей з додатковими функціональними кнопками для виклику програмних функцій введення і редагування картографічних даних .

Більшість сучасних робочих станцій складається зі спеціально підібраних стандартних комплектуючих, готові машини тестуються й оптимізуються для виконання певного набору завдань і програмного забезпечення. Для геоінформаційних систем розроблені типові конфігурації робочих станцій для введення чи виведення даних з різними периферійними пристроями, що містять визначені моделі процесорів, відеокарт, дисплеїв, периферійних пристроїв. Наприклад, сучасна робоча станція для введення картографічних даних зі сканера і їхньої подальшої обробки повинна оснащуватися процесором з тактовою частотою 2-3 ГГц, оперативною пам'яттю не менше 512 Мб, спеціальним відеоприскорювачем, дисковою пам'яттю не менше 100 Гб. Розмір монітора, що рекомендується для перегляду і редагування даних, — не менше 19 дюймів. У деяких випадках конфігурація робочої станції підбирається для роботи з конкретною моделлю сканера, дигітайзера, плотера, стереофотограметричної станції та ін.

Настільні персональні комп'ютери. Комп'ютери настільної конфігурації призначені для роботи користувача в умовах офісу чи будинку. Електронні компоненти комп'ютера складені в єдиному корпусі (системному блоці), кожен комп'ютер оснащений засобами керування, що підключаються (миша, клавіатура, монітор). Фірма Apple поміщає в єдиний моноблок разом з електронними компонентами так само і монітор. Настільні комп'ютерирозраховані на роботу переважно одного користувача і допускають різні варіанти настроювання апаратної і програмної конфігурації, підключення периферійних пристроїв, а так само зміни зовнішнього вигляду.

  Комп'ютери цього класу розраховані на виконання порівняно нескладних завдань, що не вимагають значних обчислень, побудови складних тривимірних зображень, збереження й обробки великих масивів даних. У той самий час розроблений досить широкий набір програмного ГІС-забезпечення, здатного ефективно працювати на комп'ютерах з порівняно невисокими технічними характеристиками. На базі персональних комп'ютерів можливе створення робочих місць для введення текстових чи табличних даних, перегляду готових наборів кінцевих даних, електронних атласів та ін.

Найбільш відомі настільні комп'ютери фірм Hewlett Packard, Compaq, IBM. Значна кількість комп'ютерів складається місцевими невеликими компаніями з наборів комплектуючих деталей на конкретне замовлення користувача.

Мобільні комп'ютери. Перший мобільний комп'ютер був створений ще в 1980 р. і важив 12 кг. Сучасні мобільні комп'ютери мають технічні характеристики, які нічим не поступаються характеристикам настільних моделей при істотно менших розмірах і вазі. Розміри більшості моделей переносних комп'ютерів класу Notebook (записна книжка) не перевищують розмірів великої папки при вазі менше 3 кг. Основними компонентами, що дозволили досягти таких характеристик, є плоскі рідинно-кристалічні екрани розміром 14-15" і високоємні елементи автономного електроживлення. Необхідність економії енергії зумовила випуск спеціальних мобільних версій основних типів процесорів, що при високій тактовій частоті мають знижене енергоспоживання. Для мобільних комп'ютерів розроблені спеціальні моделі портативних твердих магнітних дисків, мікросхем оперативної пам'яті. Багато моделей Notebook оснащені вмонтованими дисководами, модемами, портами для підключення периферійних пристроїв (зовнішніх моніторів, клавіатур, миші). Мобільні комп'ютери відрізняються більш високим ступенем інтегрованості комплектуючих вузлів, і їх складання виробляється тільки на спеціалізованих підприємствах. Найбільш відомі моделі мобільних ПК фірм Toshiba, Compaq, HP, IBM.

 Особливим підкласом мобільних комп'ютерів є пристрої, призначені для роботи в особливо складних умовах польових досліджень. У цьому випадку особлива увага приділяється забезпеченню міцності як окремих компонентів, так і всієї системи в цілому. Розроблено спеціальні моделі ударо- і вібростійких рідинно-кристалічних моніторів і твердих дисків, використовуються броньовані водо- і пилонепроникні корпуси з амортизаторами, потужні джерела автономного електроживлення. Такі пристрої можуть працювати більше 10 годин без підзарядки, витримують велику вібрацію чи падіння з висоти 2 м. Ці комп'ютери широко використовуються в польових експедиціях, на будівництві, гірських розробках та ін.

  Створення інтегрованих багатофункціональних мікросхем зумовила появу нового класу комп'ютерів — palmtop (надолонні комп'ютери). При розмірах записної книжки і вазі до 150-200 г ці комп'ютери мають багато функцій своїх повнорозмірних аналогів. Останні моделі оснащені повнокольоровими рідинно-кристалічними моніторами, чуттєвими до натискання, портами для підключення зовнішніх пристроїв збереження даних, засобами зв'язку з настільними комп'ютерами. Ці пристрої можуть бути оснащені процесорами з швидкодією 200-400 МГц і 64 Мб оперативної пам'яті, що дозволяє використовувати полегшену версію операційної системи Windows СЕ і відповідний набір службових утиліт та офісних програм. Введення інформації здійснюється за допомогою чуттєвого екрана і системи розпізнавання рукописних символів. Деякі моделі оснащуються радіомодемами на основі мобільних телефонів, що дозволяє використовувати електронну пошту і переглядати вміст Web-сторінок.

  Цей клас мобільних пристроїв використовується для організації мобільних сервісів ГІС. Зі спеціального сервера користувач може завантажити картографічну базу даних і працювати з нею за допомогою адаптованого для цих апаратних платформ програмного забезпечення. Уже розроблені мобільні версії популярних ГІС-пакетів Mapinfо і Arc View, а так само картографічні бази даних великих міст США і Європи, бази даних автомобільних доріг, за допомогою яких користувач такого пристрою може визначати своє місце розташування, найкоротший маршрут та ін.

2. Архітектура ЕОМ.

Комп'ютер - це електронний пристрій, що виконує операції введення інформації, зберігання та оброблення її за певною програмою, виведення одержаних результатів у формі, придатній для сприйняття людиною. За кожну з названих операцій відповідають спеціальні блоки комп'ютера:

  1.  пристрій введення,
  2.  центральний процесор,
  3.  запам'ятовуючий пристрій,
  4.  пристрій виведення.

Всі ці блоки складаються з окремих дрібніших пристроїв. Зокрема в центральний процесор можуть входити арифметико-логічний пристрій (АЛП), внутрішній запам'ятовуючий пристрій у вигляді регістрів процесора та внутрішньої кеш-пам'яті, керуючий пристрій (КП). Пристрій введення, як правило, теж не є однією конструктивною одиницею. Оскільки види інформації, що вводиться, різноманітні, джерел може бути декілька. Це стосується і пристрою виведення.

Запам'ятовуючий пристрій - це блок ЕОМ, призначений для тимчасового (оперативна пам'ять) та тривалого (постійна пам'ять) зберігання програм, вхідних і результуючих даних та деяких проміжних результатів. Інформація в оперативній пам'яті зберігається тимчасово лише при включеному живленні, але оперативна пам'ять має більшу швидкодію. В постійній пам'яті дані можуть зберігатися навіть при вимкненому комп'ютері, проте швидкість обміну даними між постійною пам'яттю та центральним процесором, у переважній більшості випадків, значно менша.

Арифметико-логічний пристрій - це блок ЕОМ, в якому відбувається перетворення даних за командами програми: арифметичні дії над числами, перетворення кодів та ін.

Керуючий пристрій координує роботу всіх блоків комп'ютера. У певній послідовності він вибирає з оперативної пам'яті команду за командою. Кожна команда декодується, за потреби елементи даних з указаних в команді комірок оперативної пам'яті передаються в АЛП. АЛП настроюється на виконання дії, вказаної поточною командою (в цій дії можуть брати участь також пристрої введення-виведення); дається команда на виконання цієї дії. Цей процес буде продовжуватися доти, доки не виникне одна з наступних ситуацій: вичерпано вхідні дані, з одного з пристроїв надійшла команда на припинення роботи, вимкнено живлення комп'ютера.

Описаний принцип побудови ЕОМ носить назву архітектури фон Неймана - американського вченого угорського походження Джона фон Неймана, який її запропонував.

Сучасну архітектуру комп'ютера визначають також такі принципи:

  1.   Принцип програмного керування. Забезпечує автоматизацію процесу обчислень на ЕОМ. Згідно з цим принципом, запропонованим англійським математиком Ч.Беббіджем у 1833 р., для розв'язання кожної задачі складається програма, що визначає послідовність дій комп'ютера. Ефективність програмного керування є високою тоді, коли задача розв'язується за тією самою програмою багато разів (хоч і за різних початкових даних).
  2.  Принцип програми, що зберігається в пам'яті. Згідно з цим принципом, сформульованим Дж. фон Нейманом, команди програми подаються, як і дані, у вигляді чисел й обробляються так само, як і числа, а сама програма перед виконання завантажується в оперативну пам'ять. Це прискорює процес її виконання.
  3.  Принцип довільного доступу до пам'яті. Згідно з цим принципом, елементи програм та даних можуть записуватися у довільне місце оперативної пам'яті. Довільне місце означає можливість звернутися до будь-якої заданої адреси (до конкретної ділянки пам'яті) без перегляду попередніх.

На підставі цих приниців можна стверджувати, що сучасний комп'ютер - технічний пристрій, який після введення в пам'ять початкових даних у вигляді цифрових кодів і програми їх обробки, вираженої також цифровими кодами, здатний автоматично здійснити обчислювальний процес, заданий програмою, і видати готові результати розв'язання задачі у формі придатній для сприйняття людиною.

Реальна структура комп'ютера значно складніша, ніж розглянута вище (її можна назвати логічної структурою). У сучасних комп'ютерах, зокрема персональних, все частіше здійснюється відхід від традиційної архітектури фон Неймана, зумовлений прагненням розробників та користувачів до підвищення якості та продуктивності комп'ютерів. Якість ЕОМ характеризується багатьма показниками. Це і набір команд, які комп'ютер здатний розуміти, і швидкість роботи (швидкодія) центрального процесора, кількість периферійних пристроїв введення-виведення, які можна приєднати до комп'ютера одночасно і т.д. Головним показником є швидкодія - кількість операцій, яку процесор здатний виконати за одиницю часу. На практиці корситувача більше цікавить продуктивність комп'ютера - показник його ефективної швидкодії, тобто здатності не просто швидко функціонувати, а швидко розв'язувати конкретні поставлені задачі.

Як результат, всі ці та інші фактори спричинили принципове і конструктивне вдосконалення елементної бази комп'ютерів, тобто створення нових, більш швидких, надійних і зручних у роботі процесорів, запам'ятовуючих пристроїв, пристроїв введення-виведення і т.д. Проте, слід усвідомлювати, що швидкість роботи елементів неможливо збільшувати безмежно (існують сучасні технологічні обмеження та обмеження, зумовлені фізичними законами). Тому розробники комп'ютерної техніки шукають вирішення цієї проблеми вдосконаленням архітектури ЕОМ.

Так, з'явилися комп'ютери з багатопроцесорною архітектурою, в яких кілька процесорів працюють одночасно, а це означає, що продуктивність такого комп'ютера дорівнює сумі продуктивностей процесорів. У потужних комп'ютерах, призначених для складних інженерних розрахунків і систем автоматизованого проектування (САПР), часто встановлюють два або чотири процесори. У надпотужних ЕОМ (такі машини можуть, наприклад, моделювати ядерні реакції в режимі реального часу, передбачати погоду в глобальному масштабі) кількість процесорів досягає кількох десятків.

Швидкість роботи комп'ютера істотно залежить від швидкодії оперативної пам'яті. Тому постійно ведуться пошуки елементів для оперативної пам'яті, які потребували б якомога менше часу на операції читання-запису. Але разом із швидкодією зростає вартість елементів пам'яті, тому нарощення швидкодійної оперативної пам'яті потрібної ємності не завжди прийнятна економічно.

Проблема вирішується побудовою багаторівневої пам'яті. Оперативна пам'ять складається з двох-трьох частин: основна частина великої ємності будується на відносно повільних (більш дешевих) елементах, а додаткова (так звана кеш-пам'ять) складається зі швидкодійних елементів. Дані, до яких процесор звертається найчастіше містяться в кеш-пам'яті, а більший обсяг оперативної інформації зберігається в основній пам'яті.

Раніше роботою пристроїв введення-виведення керував центральний процесор, що займало в нього чимало часу. Архітектура сучасних комп'ютерів передбачає наявність каналів прямого доступу до оперативної пам'яті для обміну даними з пристроями введення-виведення без участі центрального процесора, а також передачу більшості функцій керування периферійними пристроями спеціалізованим процесорам, що розвантажує центральний процесор і підвищує його продуктивність.

3. Технології розв’язування задач за допомогою ЕОМ

Зараз важко уявити собі життя людини без комп'ютера. Люди використовують його для розв'язання найрізноманітніших задач: від виконання важких обчислень до виконання кропіткої домашньої роботи (прання білизни, приготування їжі, миття посуду і, навіть, домашній секретар).

 Персональний комп'ютер зараз є майже в кожному будинку і без нього неможлива обробка такого величезного потоку інформації, який зараз буквально "наринув" на людину. Оформлення складної документації, створення та обробка графічних зображень, отримання даних з будь-якого питання з баз даних та світової мережі Інтернет, табличні розрахунки, розв'язування математичних задач, навчання. Ось далеко не повний перелік всіх можливостей нашого помічника - комп'ютера.

 Для розв'язання цих задач в розпорядженні користувача є велика кількість різноманітного програмного забезпечення, яке поділяється на чотири великі категорій:

  1.  операційні системи - програми, що забезпечують працездатність комп'ютера;
  2.  системні утиліти - програми, що оптимізують роботу з комп'ютером (архіватори, антивірусні засоби, програми роботи з дисками і таке інше);
  3.  інструментальні засоби - системи програмування, що дозволяють створювати інші програми;
  4.  прикладне програмне забезпечення - програми, призначені для розв'язання певного класу задач.

Отримавши задачу, користувач, виходячи з її умови, вирішує, яким програмним засобом можна скористатися для її розв'язання. Якщо в складі програмного забезпечення є програма, придатна для цього, то користувач вибирає її як інструмент, якщо ж ні, то доводиться створювати нову спеціальну програму, виконання якої призведе до очікуваного результату.

 Наприклад, нам необхідно оформити газету, присвячену якійсь події. Вочевидь, що для розв'язування цієї задачі будь-який комп'ютер має необхідні програми, що дозволяють оформити тексти та графічні зображення різної складності (це текстові та графічні редактори, настільні видавницькі системи тощо).

 Інший приклад: необхідно побудувати графік заданої функції. І для розв'язування цієї задачі комп'ютер має необхідне програмне забезпечення - електронні таблиці.

Примітка: можна запропонувати дітям дати свої приклади задач для комп'ютера.

Однак є величезна категорія задач, для розв'язку яких не існує відповідного програмного забезпечення, або існуюче програмне забезпечення з деяких причин нас не влаштовує. В цьому випадку ми повинні самостійно написати програму для виконання поставленої мети.

Розглянемо технологію розв'язання прикладної задачі на ЕОМ (зверніть увагу, що задачі будуть нескладні і тому можна було б скористатися і наявним програмним забезпечення для їх розв'язання, але з навчальною метою ми прослідкуємо етап створення самостійного програмного продукту).

 Розв'язування будь-якої задачі починається з її постановки. На цьому етапі треба чітко з'ясувати, що дано і що треба знайти. Тобто треба добре уявити, в чому полягає дана задача, які необхідні початкові дані для її розв'язання, та що можна вважати за очікуваний результат.

Наприклад, оцінити ремонт  кімнати. Виконання розрахунків на витратні матеріали, оплату виконаних робіт тощо. (Більш серйозні програмні засоби можуть допомогти, навіть, у виборі оптимального набору витратних матеріалів з урахуванням вартості безпосередньо матеріалів та вартості перевезень з пошуком найдешевших варіантів, але ми задачу спрощуємо.)

  В нашому випадку вхідними даними повинні бути: розміри кімнати, що підлягає ремонту, набір необхідних витратних матеріалів (можна тільки поклеїти шпалери та виконати фарбувальні роботи, а можна замінити двері, вікна та меблі), ціни на витратні матеріали, вартість виконуваних робіт тощо. Результатом роботи програми повинна бути необхідна сума коштів на виконання ремонтних робіт з урахуванням витратних матеріалів.

 Другим етапом розв'язування задач є побудова математичної моделі. Це дуже відповідальний етап, тому що не завжди в умові задачі міститься формула, придатна для застосування в програмі. Для цього створюється інформаційна математична модель об'єкта.

В нашому випадку математичною моделлю нашої задачі буде:

по-перше, розрахунок площі поверхні, що підлягає ремонту (для спрощення ми будемо тільки наклеювати шпалери);

по-друге, розрахунок необхідних витратних матеріалів з урахуванням площі шпалер, що знаходяться в рулоні, та проценту додаткових шпалер для співпадіння малюнків;

по-третє, розрахунок вартості витратних матеріалів та виконаних робіт.

Примітка: ці формули отримати неважко і тому за бажанням можна дати це завдання учням безпосередньо на уроці або вдома.

 Наступним етапом є розробка алгоритму на основі побудованої математичної моделі. Для цього можна використати вже відомі методи та способи розв'язування отриманих математичних співвідношень, причому при наявності кількох методів розв'язання необхідно вибрати оптимальний, провівши їх оцінку та аналіз. Якщо серед існуючих методів розв'язання необхідний відсутній, треба розробити власний.

 Під час створення складних алгоритмів застосовується метод покрокової деталізації, який полягає в тому, що складний алгоритм розбивається на прості підзадачі, кожна з яких в свою чергу може розбиватися на ще простіші. Такий підхід дозволяє також розбити алгоритм на окремі частини - модулі, реалізацію кожного з яких доручити окремому програмісту. В цьому випадку програміст концентрується на розв'язанні окремої підзадачі, використовуючи для цього свої методи.

 Останнім етапом у методі покрокової розробки є об'єднання окремих модулів у єдине ціле. Для цього між всіма модулями повинні бути встановлені зв'язки, тобто узгоджена передача інформації від одних модулів до інших. Це дуже важка робота і від оптимальності вибору вхідних та вихідних параметрів окремих модулів кінець кінцем залежить оптимальність роботі всієї програми.

 Алгоритм, призначений для комп'ютерної реалізації, має бути записаний однією з мов програмування. На даному етапі розвитку комп'ютерної техніки різноманітність існуючих мов програмування дає програмісту можливість вибрати оптимальний варіант для отримання бажаного результату. А враховуючи можливість розбиття алгоритму на окремі модулі, реалізацію кожної підзадачі взагалі можна виконати різними засобами.

 Написану вибраною мовою програмування програму необхідно тепер налагодити та протестувати. Під налагоджуванням програми розуміється процес випробування роботи програми з виправленням виявлених при цьому помилок. Виправити помилки, пов'язані з правилами написання програм, вам допомагає середовище програмування, а ось логічні помилки виправити набагато важче. В цьому вам можуть допомогти правильно підібрані тести.

 Останній етап - це використання програми для отримання шуканих результатів. На цьому етапі обов'язково ще раз перевірити правильність очікуваних результатів. Якщо отримані результати являються помилковими, необхідно повернутися до одного з попередніх етапів (іноді, навіть, до найпершого - постановки задачі) і ще раз перевірити правильність зроблених робіт. Можливо, що на деяких етапах буде необхідно доопрацювати або повністю переробити весь етап.

 Тепер програму можна експлуатувати і, навіть, пропонувати іншим користувачам, доповнивши її необхідною документацією.

 Отже, основними етапами розв'язку задачі за допомогою ЕОМ є наступні:

  1.  постановка задачі;
  2.  побудова математичної моделі;
  3.  розробка алгоритму;
  4.  опис алгоритму мовою програмування;
  5.  тестування та налагоджування програм;
  6.  експлуатація програми.


 

А также другие работы, которые могут Вас заинтересовать

20340. СОЦИАЛЬНО-ИСТОРИЧЕСКИЕ УСЛОВИЯ И ПРЕДПОСЫЛКИ ВОЗНИКНОВЕНИЯ ФИЛОСОФИИ. ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ФИЛОСОФСКОЙ КУЛЬТУРЫ 50 KB
  Социальноисторические условия и предпосылки возникновения философии. Необходимым условием возникновения философии выступает рост производительных сил общва техники трудовых умений и знаний. Из истории вы должны знать какие причины видят в основании греческого чуда которое в частности привело к возникновению философии.
20341. ОБЩАЯ ХАРАКТЕРИСТИКА ИСТОРИЧЕСКИХ ЭТАПОВ ВЗАИМООТНОШЕНИЯ ФИЛОСОФИИ И НАУКИ. СОВРЕМЕННОЕ ПОНИМАНИЕ ФИЛОСОФИИ КАК НАУКИ, ЕЕ МЕСТА В СИСТЕМЕ НАУЧНОГО ЗНАНИЯ. НАУКА, ФИЛОСОФИЯ, ЦЕННОСТЬ 44 KB
  СОВРЕМЕННОЕ ПОНИМАНИЕ ФИЛОСОФИИ КАК НАУКИ ЕЕ МЕСТА В СИСТЕМЕ НАУЧНОГО ЗНАНИЯ. Наука в это время в целом входит в лоно философии. Одни социальноэкономические условия способствовали появлению философии и науки – атмосфера демократии возможность существования теоретического абстрактного знания.
20342. ПРИЧИНЫ И ЗНАЧЕНИЕ ПЛЮРАЛИЗМА ФИЛОСОФСКИХ УЧЕНИЙ. ОСНОВНОЙ ВОПРОС ФИЛОСОФИИ И ОСНОВНЫЕ ФИЛОСОФСКИЕ НАПРАВЛЕНИЯ. ОПРЕДЕЛЕНИЕ ФИЛОСОФИИ КАК НАУКИ 38 KB
  ОСНОВНОЙ ВОПРОС ФИЛОСОФИИ И ОСНОВНЫЕ ФИЛОСОФСКИЕ НАПРАВЛЕНИЯ. ОПРЕДЕЛЕНИЕ ФИЛОСОФИИ КАК НАУКИ. Для многих это признак слабости философии. В философии сегодня наиболее полно представлена самобытность человека.
20343. СПЕЦИФИКА ОБЪЕКТИВНОГО ИДЕАЛИЗМА. ОБЪЕКТИВНЫЙ ИДЕАЛИЗМ, РЕЛИГИЯ, РЕЛИГИОЗНАЯ ФИЛОСОФИЯ. ОБЪЕКТИВНЫЙ ИДЕАЛИЗМ ПЛАТОНА, ФОМЫ АКВИНСКОГО, Г. ГЕГЕЛЯ. ПЕРСПЕКТИВЫ ОБЪЕКТИВНОГО ИДЕАЛИЗМА 52 KB
  Но размышляя он приходит к выводу что известный тезис христианства о творении мира из ничто ничего нужно понимать так: есть некое Ничто существующее независимо от Бога. Но Бердяев считал что в таком случае никак нельзя обосновать свободу какая это свобода если все в мире подконтрольно Богу и все грехи мира падают на Бога. Но лишает христианского Бога роли господина всего существующего что для большинства христиан абсолютно неприемлемо. мы в силу общественной привычки и обучения часто без особых доказательств не говоря уже о...
20344. СПЕЦИФИКА СУБЪЕКТИВНОГО ИДЕАЛИЗМА. СОФИСТИКА, СКЕПТИЦИЗМ И СУБЪЕКТИВНЫЙ ИДЕАЛИЗМ. ИСТОРИЯ СТАНОВЛЕНИЯ СУБЪЕКТИВНОГО ИДЕАЛИЗМА ОТ БЕРКЛИ К КАНТУ. ОСНОВНЫЕ ТЕМЫ И ОСНОВЫ КРИТИКИ СУБЪЕКТИВНОГО ИДЕАЛИЗМА 63.5 KB
  Си – философское направление обостренно воспринимающее проблему тему ограниченности человеческого опыта знания откуда для него объективно вытекает что сознание человека творит мир. Для крайнего последовательного СИ это означает не только познавательно гносеологически творит мир т. человек своим сознанием делает то что мы называем считаем материальным миром. В античности склонялись либо к простому релятивизму у каждого свои взгляды на мир либо к благоразумию критика философских взглядов одновременно не отвергала а наоборот...
20345. ИСТОРИЧЕСКИЕ ФОРМЫ МАТЕРИАЛИЗМА. ФИЛОСОФСКИЕ, ЕСТЕСТВЕННОНАУЧНЫЕ И СОЦИАЛЬНЫЕ ПРЕДПОСЫЛКИ ВОЗНИКНОВЕНИЯ НОВОГО МАТЕРИЛАЗИМА В СЕР. 19 В. НОВЫЙ МАТЕРИАЛИЗМ В НАЧАЛЕ III ТЫСЯЧЕЛЕТИЯ 37 KB
  Это связано с тем что они делали ффию так или иначе критикуя или не соглашаясь с мифологией например сводя мир к водному началу Фалес Первым собственно М был Демокрит. Атомов и пустоты было Демокриту достаточно не только чтобы построить мир но и разработать первое в ффии учение о детерминизме; сменим им или противопоставив его мифологическим учениям о судьбе. Определенное положение мира в момент времени Т однозначно определяет положение мира в следующий момент времени т. если бы мир откатили на пять лет назад Вы снова бы читали о...
20346. СПЕЦИФИКА И ОСНОВНЫЕ ПРОБЛЕМЫ ОНТОЛОГИИ. ЕДИНСТВО И МНОГООБРАЗИЕ МАТЕРИАЛЬНОГО МИРА. ПОНИМАНИЕ МАТЕРИИ В НОВОМ МАТЕРИАЛИЗМЕ. УНИВЕРСАЛЬНЫЕ СВОЙСТВА И ХАРАКТЕРИСТИКИ МАТЕРИИ. ДИАЛЕКТИЧЕСКАЯ И «ДУРНАЯ» БЕСКОНЕЧНОСТЬ. ПРИНЦИП МАТЕРИАЛЬНОГО ЕДИНСТВА МИРА 49.5 KB
  ПОНИМАНИЕ МАТЕРИИ В НОВОМ МАТЕРИАЛИЗМЕ. УНИВЕРСАЛЬНЫЕ СВОЙСТВА И ХАРАКТЕРИСТИКИ МАТЕРИИ. Это связано не только с тем материализму понятие материи ближе. В понятии материи сохранятся продуктивная диалектическая жизненная двойственность которой лишена категория бытия.
20347. СУБСТАНЦИАЛЬНАЯ, СУБЪЕКТИВНО-ИДЕАЛИСТИЧЕСКАЯ, РЕЛЯЦИОННАЯ КОНЦЕПЦИИ ПРОСТРАНСТВА И ВРЕМЕНИ. ПРОСТАНСТВО И ВРЕМЯ КАК АТРИБУТЫ МАТЕРИИ. ПРОБЛЕМА ТЕМПОРАЛЬНОСТИ 33.5 KB
  СУБСТАНЦИАЛЬНАЯ СУБЪЕКТИВНОИДЕАЛИСТИЧЕСКАЯ РЕЛЯЦИОННАЯ КОНЦЕПЦИИ ПРОСТРАНСТВА И ВРЕМЕНИ. Гипотезы об отдельном существовании времени как такового впечатляют но понимаются с трудом. Кинг чтото подобное использовал в своих по крайней мере двух произведениях; Сказка о потерянном времени; машины времени 2. Субъективноидеалистическая трактовка пространства и времени.
20348. ПОНИМАНИЕ ДВИЖЕНИЯ В НОВОМ МАТЕРИАЛИЗМЕ. ОСНОВНЫЕ ФОРМЫ ДВИЖЕНИЯ МАТЕРИИ И ДИАЛЕКТИКА ИХ ВЗАИМОСВЯЗИ. ДВИЖЕНИЕ И РАЗВИТИЕ 43 KB
  ПОНИМАНИЕ ДВИЖЕНИЯ В НОВОМ МАТЕРИАЛИЗМЕ. ОСНОВНЫЕ ФОРМЫ ДВИЖЕНИЯ МАТЕРИИ И ДИАЛЕКТИКА ИХ ВЗАИМОСВЯЗИ. Общее понимание движения в новом материализме. Специфику понимания движения в новом материализме можно дать как результат синтез итог диалектической спирали в области истории философии.