806

Радиальная скорость

Практическая работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Несущая частота сигнала наземного передающего пункта. Релятивистские частотно-фазовые соотношения между параметрами сигналов. Геоцентрические радиус-векторы передающего пункта, космического аппарата и приемного пункта .

Русский

2013-01-06

234.5 KB

5 чел.

Радиальная скорость

Обозначим несущую частоту сигнала наземного передающего пункта (Н1) через , частоту сигнала, принимаемого на космическом аппарате через , а несущую сигнала ответа КА, принимаемого на наземном приемном пункте (Н2)  через . Несущая частота сигнал ответа КА формируется путем когерентного преобразования несущей принимаемого на КА запросного сигнала. Положим, что интервалы измерений частотного смещения принимаемого сигнала на наземном пункте относительно опорного образуются от задающего генератора приемного пункта.

Для радиолинии Н1К        Н2         (рис3.1)  согласно (6), (7) (см. лекцию «Релятивистские частотно-фазовые соотношения между параметрами сигналов»)

                        ,         (3.1)

где в первом приближении, с точностью до членов, пропорциональных ,

                        (3.2)

                       ;                             (3.3)

и  модуль геоцентрической скорости и гравитационный потенциал передающего и приемного пунктов в моменты времени  и .

Время распространения сигнала по радиолинии Н1К        Н2         

                         =,                       (3.4)

где                               ,                                             (3.5)

    

,  и  геоцентрические радиус-векторы передающего пункта, космического аппарата и приемного пункта соответственно в моменты времени  ,  и ;

- суммарная задержка запросного и ответного сигнала в среде распространения (в общем случае – в тропосфере и ионосфере Земли),

откуда

                                  .                                  (3.6)

Подставив (3.6) в (3.1), получим

           ,       (3.7)

где  и  -начало и конец некоторого интервала измерения разностной частоты.

Обозначим   и представим

,                            (3.8)

откуда

.                                    (3.9)

Подставив (3.9) в (3.7), получим

=

,                                   (3.10)

где   и - некоторые значения функций  и , принадлежащие интервалу измерения  , ;

                      =               (3.11)

моменты времени   и  заданы, а  и   вычисляются итерационно, по соотношениям

            = - ;  =-,                                       (3.12)

            =-;=-;                                       (3.13)

                                  =.                              (3.14)

Из (3.10) с погрешностью не более 4. 10-6 м/с для приземной области можно  записать

                                ,                              (3.15)

где в первом приближении

                                                  ;                         (3.16)

 и    - некоторые значения модулей геоцентрической скорости и гравитационных потенциалов  передающего и приемного пунктов на  интервале измерения, вычисляемые, например, на середины интервала

для пункта н2                            ,                          (3.17)

где                                                        ;

и для пункта Н1                               ,                     (3. 18)

Момент определяется по (3.18) с требуемой точностью итерационно.

Соотношение (3.15) позволяет определить среднее на интервале  значение скоростного навигационного параметра по соответствующему значению , функцией которого является результат непосредственного измерения разности несущей частоты принимаемого сигнала и частоты опорного сигнала. При этом скорость релятивистского смещения шкал времени источника и приемника сигнала вычисляется с использованием априорных данных о движении пункта излучения запросного сигнала и пункта приема сигнала с КА, а поправка на среду распространения сигнала определяется с использованием модели распространения сигнала в тропосфере и ионосфере Земли.

Если передающий и приемный пункты территориально совмещены, или разнесены  несущественно, так что    и    , то  и

формула  (3.15) принимает вид

.                        (3.15а)                          

Текущая разность частот опорного , сформированного от задающего генератора приемного пункта, и принятого (t) с КА сигнала определяется выражением

       (t)=-(t)= - ,           (3.19)

где

      .                                   (3.20)

В (3.20) -текущее номинальное значение несущей частоты сигнала, излучаемого передающим пунктом,    - номинальное значение частоты опорного сигнала. Заметим, что если у передающего и приемного пунктов общий задающий генератор частоты, из которого формируется несущая запросного сигнала и частота опорного сигнала  приемного пункта, то   и  второе слагаемое правой части формулы (3.19) равно нулю.

Пусть передающий пункт и приемный пункт имеют общий задающий генератор частоты и пусть на интервале наблюдения с заданной дискретностью в аппаратном комплексе  приемного пункта производится измерение разности частот , причем интегрирование осуществляется на подынтервалах . Для некоторого подынтервала  результат  измерения

=,           (3.21)

где

                                     .                         (3.22)

Выразим из (3.21) значение  через результаты непосредственных измерений

                                                         .                     (3.23)

Подставив (3.23) в (3.15а), получим

                                                .                         (3.24)

Знак над составляющей в правой части (3.24) означает, что она вычисляется по априорным данным о параметрах среды распространения сигнала.

Соотношение (3.24) и его расчетный аналог вида (3.11) выражают среднее на подынтервале  приращение суммарной дальности. Для удобства восприятия величин радиальной скорости КА от суммарной радиальной скорости переходят к ее половинному значению

 .                       (3.25)


 

А также другие работы, которые могут Вас заинтересовать

74339. Моделирование (представление) линии эл.передачи 0,38-220 кВ. характерные данные и основные соотношения между параметрами схем замещения ЛЭП 210.5 KB
  Характерные данные и основные соотношения между параметрами схем замещения ЛЭП. Выше приведена характеристика отдельных элементов схем замещения линий. При расчете симметричных установившихся режимов ЭС схему замещения составляют для одной фазы
74340. Особенности моделирования воздушных линий электропередачи со стальными проводами 116.5 KB
  Особенности моделирования воздушных линий электропередачи со стальными проводами. Поэтому стальные провода применяют при выполнении больших переходов через естественные препятствия широкие реки горные ущелья и т.
74341. Моделирование протяженных линий эл.передачи напряжением 330-750 кВ 38 KB
  Линии электропередачи с номинальным напряжением 330 500 750 кВ разделяют посредством переключательных пунктов на участки в 250 350 км что локализует и уменьшает влияние поврежденных участков на изменение параметров режима и устойчивость работы сети рис. Такое построение линии а также включение промежуточных подстанций разбивает электропередачу на участки и ее удобно моделировать цепочной схемой замещения. Протяженные линии в режиме минимальных нагрузок имеют избыток реактивной мощности генерируемой линией. Для компенсации этой...
74342. Режим передачи активной мощности для идеализированной электропередачи. Условия передачи активной мощности 319.5 KB
  Отложим вектор фазного напряжения U1ф в начале линии по вещественной оси. Под углом φ к нему построим вектор тока I в линии. В результате получим падение напряжения ΔU и вектор фазного напряжения U2ф в конце линии. Линия без потерь: а схема замещения; б векторная диаграмма; в угловая характеристика мощности Тогда активная мощность в начале линии 10.
74343. Режимные и технические мероприятия повышения пропускной способности электропередачи 31 KB
  Причем с увеличением длины линий второй фактор устойчивость определяет предел передаваемой мощности. Известно что передаваемая по линии без потерь активная мощность АМ и потребляемая по ее концам реактивная мощность РМ в зависимости от угла передачи d определяются как: Ограничения передаваемой мощности Р0 вызваны необходимостью обеспечить статическую устойчивость в нормальном режиме с коэффициентом запаса по передаваемой мощности: где предельная мощность Также нужно обеспечить динамическую устойчивость в аварийном режиме и передачу...
74344. ОБЩАЯ ХАРАКТЕРИСТИКА ЗАДАЧИ РАСЧЕТА И АНАЛИЗА УСТАНОВИВШИХСЯ РЕЖИМОВ. ЦЕЛЬ РАСЧЕТОВ. ОСНОВНЫЕ ДОПУЩЕНИЯ ПРИ РАСЧЕТЕ РЕЖИМОВ 95.5 KB
  Естественно такая электрическая цепь обязательно включает в себя ИП и ЭП как составные части и в едином смысле понятие электрической сети формально совпадает с понятием ЭЭС как электрической цепи. При решении ряда задач эксплуатации развития и проектирования электрических сетей необходимо оценить условия в которых будут работать потребители и оборудование электрической сети. Также эти оценки дают возможность установить допустимость анализируемого режима при передаче по сети данных мощностей при подключении новых и отключении...
74345. РАСЧЕТ И АНАЛИЗ УСТАНОВИВШЕГОСЯ РЕЖИМА УЧАСТКА ЭЛЕКТРИЧЕСКОЙ СЕТИ 1.09 MB
  В качестве участка может рассматриваться любой элемент трехфазной электрической сети (линия электропередачи, трансформатор и т.д.), в дальнейшем именуемый также общим термином — электропередача. Предварительно рассмотрим участок — электропередачу, схема замещения которого состоит из одной продольной ветви с сопротивлением
74346. ПРЕДСТАВЛЕНИЕ КОМПЕНСИРУЮЩИХ УСТРОЙСТВ 158 KB
  Создаются возможности регулирования напряжения в узлах сети и на зажимах электропотребителей: Реактивная мощность передаваемая от электростанции и других центральных источников загружает все элементы электрической сети уменьшая возможность передачи активной мощности. Поэтому по экономическим соображениям потребность в реактивной мощности в большей ее части необходимо удовлетворять за счет установки местных источников реактивной мощности. В этом случае уменьшается передача реактивной мощности по участкам сетей: снижаются потери...
74347. Составление схем замещения сетей одного или нескольких напряжений. Учет трансформации 64 KB
  Схема имеет 5 линий различного класса напряжения и 5 подстанций ступеней трансформации. Например если подстанция ПС1 соединяет выводы генератора с ЛЭП 500кВ то возможными напряжениями линий последующих ступеней будут 220 110 и т. Чем ниже напряжение сети тем большее количество линий она имеет и тем меньшая мощность передается по каждой из них.