80688

Основы корреляцоинно-регрессионного анализа

Лекция

Экономическая теория и математическое моделирование

Общая схема расчетов корреляционных моделей следующая: логический отбор факторов независимых переменных оказывающих существенное влияние на изучаемую величину зависимую переменную; выбор формы связи зависимой переменной с отобранными факторами и построение соответствующих уравнений регрессии; расчет параметров коэффициентов уравнений регрессии; расчет коэффициентов корреляции и проверка правильности произведенного отбора факторов и принятой формы связи; определение значимости существенности коэффициентов регрессии и корреляции и...

Русский

2015-02-18

116 KB

0 чел.

4

Лекции по курсу '' Моделирование и прогнозирование в экономике''

основы корреляцоинно-регрессионного анализа

1. Общая схема расчетов  корреляционных расчетов 

2. Коэффициент корреляции

3. Определение доверительных интервалов

4. Множественная регрессия

5. Коэффициент множественной корреляции

6. Автокорреляция

7. Автокорреляция остатков

  1.  Общая схема расчетов корреляционных моделей.

Общая схема расчетов корреляционных моделей следующая:

  1.  логический отбор факторов (независимых переменных), оказывающих существенное влияние на изучаемую величину (зависимую переменную);
  2.  выбор формы связи зависимой переменной с отобранными факторами и построение соответствующих уравнений регрессии;
  3.  расчет параметров (коэффициентов) уравнений регрессии;
  4.  расчет коэффициентов корреляции и проверка правильности произведенного отбора факторов и принятой формы связи;
  5.  определение значимости (существенности) коэффициентов регрессии и корреляции и их доверительных интервалов.

Определение формы связи.

Форму парной связи (например, связь между производительностью труда и фондовооруженностью) можно изобразить графически. Связь криволинейная, поэтому можно попытаться выразить эту связь с помощью уравнения параболы. Вместе с тем кривизна невелика и её можно рассмотреть как прямолинейную.

Графический метод определения формы связи зависимой и независимой величины часто оказывается недостаточно надежным. Неправильно же выбранная форма связи может привести к неправильным выводам.

Существует более надежный, алгебраический метод определения типа кривой. Он сводиться к выявлению некоего постоянства приращений зависимой и независимой переменных, специфического для каждого типа зависимостей. Например, для прямолинейной зависимости  , для квадратичной параболы , для степенной зависимости  

Линейная зависимость определена уравнением  y=a+bx

Предположив прямолинейную форму связи, оценим значения параметров a и b способом наименьших квадратов.

Исследование метода наименьших квадратов для определения параметров уравнения парной регрессии.

На графике – результаты наблюдений  значений переменных у и х.

Через область, занимаемую точками, на графике, проведена прямая.  Отклонение какой - либо точки с координатами  и составит величину  .

- фактическое значение переменной у;

- расчетное значение переменной у;

- функция параметров а и b;

обобщенный показатель рассеяния точек вокруг прямой

Стремление найти прямую, которая наилучшим образом описывала бы расположение точек в пространстве переменных у и х, или, иначе говоря, прямую, к которой в целом наиболее тесно примыкали бы отдельные точки, трансформируются в методе наименьших квадратов в критерий, согласно которому параметры а и  b должны быть подобраны так, чтобы сумма квадратов величины была минимальной, т. е.

     

Необходимым условием существования минимума функции в точках а и b является равенство нулю частных производных по неизвестным параметрам а и b.

Отсюда стандартная форма нормальных уравнений:

  1.  Коэффициент корреляции.

Уравнение регрессии характеризует взаимосвязь между переменными х и у в том смысле, что показывает, как изменяется величина у в зависимости от изменения величины х. Однако в самом уравнении регрессии с оцененными параметрами нет указания на то, как близко находятся фактические наблюдения от расчетных, т. е. нет указания на степень тесноты связи между переменными. Между зависимыми х и у определяется коэффициент корреляции:

Величина r лежит между –1 и 1. Чем выше значение r, тем теснее связь между переменными и тем с большим основанием найденная взаимосвязь может быть использована для прогнозирования.

После получения r можно продолжить статистический анализ, исследовав вопрос, в какой мере полученный коэффициент корреляции существенен.

Для проверки существенности при небольшом числе наблюдений:

  1.  Определение доверительных интервалов.

Определяются те границы, в пределах которых с заданной доверительной вероятностью будет находиться значение .

В силу того, что оценивание параметров осуществляется по выборочным данным, оценки а и b создают некоторую погрешность. Причем погрешность в значении а приводит к вертикальному сдвигу линии регрессии, а колеблемость оценки b приводит к «покачиванию» линии регрессии. При одной и той же оценке а линия регрессии будет поворачиваться вокруг оси с координатами , .

Расчетное значение  доверительного интервала:

- стат. Стьюдента.

Отдельные наблюдения рассеяны вокруг неё. В качестве меры рассеяния принимается дисперсия.

Дисперсия значения зависимой переменной, определяемой по уравнению парной регрессии будет складываться из двух компонент – дисперсии параметра а и дисперсии параметра b.

  1.  Множественная регрессия.

Зависимая переменная может быть функцией нескольких переменных  .

Введем матричные обозначения.

Имеем:

  •  вектор неизвестных параметров , j=1,2…m;
  •  вектор зависимой переменной , i=1,2…n;
  •  матрица независимых переменных , размер которых определяется числом наблюдений n и числом переменных m;
  •  вектор ошибок .

Линейная модель в матричном виде:

Оценку а, найденную по этой формуле называют оценкой метода наименьших квадратов.

Определив вектор а записывают уравнение множественной регрессии.

Для задач с двумя переменными можно записать систему нормальных уравнений.

  1.  Коэффициент множественной корреляции.

Взаимосвязь зависимой переменной у с рядом независимых переменных х измеряется в целом с помощью коэффициентов множественной корреляции.

Чем теснее данные примыкают к линии регрессии, тем больше эта величина. Если линия регрессии полностью описывает зависимую переменную, то R=1, в противном случае модуль R<1.

  1.  Автокорреляция.

Автокорреляция – это корреляционная зависимость между средними значениями уровней временного ряда: ; и т. д.

Чтобы оценить степень зависимости между средними уровнями временного ряда рассчитывают коэффициент автокорреляции между уровнями исходного ряда и того же ряда, но сдвинутого на   шагов во времени.

Общая формула для расчета коэффициента автокорреляции:

  •  средний уровень первого ряда;
  •  средний уровень второго ряда;

Наибольшее значение -------------------- должно быть таким, чтобы число пар наблюдений оказалось достаточным для вычисления коэффициента автокорреляции ------------------.

При анализе временных рядов необходимо знать существует ли автокорреляция в уровнях ряда или нет. Самым распространенным методом проверки автокорреляции является критерий Дарбина – Уотсона.

---------------------

Возможные значения критерия находятся в интервале 0-4. Если автокорреляция отсутствует, то d колеблется вокруг 2.

При проверке автокорреляции остатков критерий Дарбина – Уотсона:

--------------------

Значения также сравниваются с табличными.

  •  положительная корреляция;
  •  отрицательная корреляция.

  1.  Автокорреляция остатков.

Если вид функциональной зависимости выбран неудачно, то нельзя говорить о том, что ошибки представляют собой случайные независимые переменные. Если последовательные значения коррелированны между собой, то говорят, что имеет место автокорреляция.

Кроме того, автокорреляция может быть

5

Основы корреляционно-регрессионного анализа


 

А также другие работы, которые могут Вас заинтересовать

58848. СОЦИАЛЬНАЯ СФЕРА МУНИЦИПАЛЬНОГО СЕКТОРА 2.04 MB
  Функционирование всего государственного механизма экономики служит достижению социальных целей. Деятельность муниципального сектора заключается в реализации общегосударственной социальной политики через муниципальные образования. Все слои общества являются в большей или меньшей степени социальными или экономическими клиентами муниципальных образований
58849. Інтелектуальна гра «У колі сімї» 64.5 KB
  Мета. Поглибити знання учнів з різних предметів; розвивати память, логічне мислення, уміння швидко знаходити правильну відповідь; виховувати інтерес до оволодіння знаннями, повагу, почуття товариськості.
58850. Мероприятия направленные на формирование и подготовку кадрового резерва филиала ОАО «Иркутскэнерго» ТЭЦ-6 717 KB
  Исследовать содержание и процедуры процесса формирования кадрового резерва, изучить принципы и технологию работы с ним; Выполнить анализ структуры персонала предприятия; Разработать рекомендации по формированию и подготовки кадрового резерва.
58851. Локальная вычислительная сеть производственного кооператива «Протон» 6.2 MB
  Система должна выдерживать все нагрузки, предоставлять быстрый доступ к информации. Время восстановления системы не должно составлять более одного часа. Каждый день должны создаваться резервные копии информации на сервере. На сервере должен присутствовать ИБП для защиты от скачков электроэнергии, и системы пожаротушения.
58853. Година спілкування на тему: Щастя. Як його досягти? 83.5 KB
  Мета: допомогти учням зрозуміти складну філософську категорію щастя дати можливість упевнитися їм що досягнення щастя залежить від їхніх особистих зусиль виховати людяність працьовитість. Вихователь: Нашу годину спілкування я хотіла б почати віршем Щастя...
58854. Ділення многочленів за схемою Горнера 160.5 KB
  Мета уроку: Освітня: Формування вмінь ділити многочлен на двучлен користуючись схемою Горнера; навчити розвязувати рівняння вищих степенів за допомогою схеми Горнера. Розвиваюча: розвивати алгоритмічне мислення учнів використовуючи синтаксис і правила застосування операторів...
58855. Двійкове кодуваня. Двійкова система числення 92.5 KB
  Оволодіння мовою інформатики та умінням її використовувати для аналізу інформації; формування навичок роботи з додатковою літературою формування у свідомості учнів основних напрямків у розвитку інформатики.