8138

Статистические методы обучения. Обучение с полными данными. Метод максимального правдоподобия. Обучение байесовских сетей

Лекция

Информатика, кибернетика и программирование

Статистические методы обучения. Обучение с полными данными. Метод максимального правдоподобия. Обучение байесовских сетей. Основными понятиями при использовании статистических методов обучения продолжают оставаться данные и гипотезы, но данные рассм...

Русский

2013-02-04

65.5 KB

16 чел.

Статистические методы обучения. Обучение с полными данными. Метод максимального правдоподобия.

Обучение байесовских сетей.

Основными понятиями при использовании статистических методов обучения продолжают оставаться данные и гипотезы, но данные рассматриваются как свидетельства, то есть конкретизации случайных переменных, описывающих проблемную область, а гипотезы представляют собой вероятностные теории того, как функционирует проблемная область.

Рассмотрим простой пример. На кондитерской фабрике выпускаются леденцы двух разновидностей –  вишневые и лимонные, которые заворачиваются в одинаковые фантики и упаковываются в очень большие внешне неразличимые пакеты, относящиеся к следующим пяти типам:

h1: 100% вишневых леденцов,

h2: 75% вишневых + 25% лимонных леденцов,

h3: 50% вишневых + 50% лимонных леденцов,

h4: 25% вишневых + 75% лимонных леденцов,

h5: 100% лимонных леденцов.

Работник ОТК должен определить, к какому типу относится предоставленный на контроль пакет, которому соответствует случайная переменная H, принимающая значение от h1 до h5. По мере развертывания конфет регистрируются данные о них D1, D2, …. Dn, где Di – случайная переменная, принимающая значение из множества {cherry, lime}. Работник ОТК должен предсказать к какой разновидности относится следующая выбираемая конфета.

В баесовском обучении исходя из полученных данных вычисляется вероятность каждой гипотезы и делается предсказание. Пусть переменная D представляет все данные с наблюдаемым значением d, тогда вероятность каждой гипотезы может быть определена с помощью правила Байеса:

P(hi|d) = P(d|hi) P(hi)

Пусть необходимо сделать предсказание в отношении неизвестного количества X. В таком случае применяется следующее уравнение:

P(X|d) = =

где предполагается, что каждая гипотеза определяет распределение вероятностей по X. Это уравнение показывает, что предсказания представляют собой взвешенные средние по предсказаниям отдельных гипотез. Сами гипотезы, по сути, являются “посредниками” между фактическими данными и предсказаниями. Основными количественными показателями в байесовском подходе являются распределение априорных вероятностей гипотезы P(hi) и правдоподобие данных согласно каждой гипотезе P(d|hi).

Предположим, что изготовитель объявил о наличии распределения априорных вероятностей по значениям h1, …,h5, которое задано вектором {0.1, 0.2, 0.4, 0.2, 0.1). Правдоподобие данных рассчитывается в соответствии с предположением, что наблюдения являются независимыми и одинаково распределенными, поэтому соблюдается следующее уравнение:

P(d|hi) =

Например, если в действительности пакет содержит только лимонные леденцы (h5) и все первые 10 конфет являются лимонными леденцами, то значение P(d|h3) равно 0.510, поскольку в пакете типа h3 половина конфет – лимонные леденцы. Априори наиболее вероятным вариантом является гипотеза h3 и остается таковой после развертывания 1 конфеты с лимонным леденцом. После развертывания 2 конфет с лимонными леденцами наиболее вероятной становится гипотеза h4, а после обнаружения 3 или больше лимонных леденцов наиболее вероятной становится гипотеза h5. баесовская вероятность того, что следующий леденец будет лимонным, согласно уравнению для P(X|d) монотонно увеличивается до 1.

Данный пример показывает, что истинная гипотеза в конечном итоге будет доминировать над байесовским предсказанием. При любом заданном распределении априорных вероятностей, которое не исключает с самого начала истинную гипотезу, апостериорная вероятность любой сложной гипотезы в конечном итоге полностью исчезает.

В реальных задачах обучения пространство гипотез обычно является очень большим или бесконечным, поэтому приходится вместо прямого вычисления суммы для P(x|d) (или, в непрерывном случае, интегрирования) приходится прибегать к приближенным или упрощенным методам.

Упрощение может быть достигнуто путем предсказаний на основе единственной наиболее вероятной гипотезы, т.е. той гипотезы hi, которая максимизирует значение P(hi|d). Такую гипотезу hmap называют максимально апостериорной. Предсказания, сделанные на основе такой гипотезы, являются приближенно байесовскими до такой степени, что P(X|d) = P(X|hmap). В примере hmap = h5 после обнаружения 3 лимонных леденцов подряд.

Упрощение может быть также достигнуто, например, путем принятия предположения о равномерном распределении априорных вероятностей по пространству гипотез. В этом случае обучение с помощью максимально апостериорной гипотезы сводится к выбору гипотезы hi, которая максимизирует значение P(d|hi). Такая гипотеза называется гипотезой с максимальным правдоподобием. Это – приемлемый подход, применяемый в тех обстоятельствах, когда нет оснований априорно отдавать предпочтение одной гипотезе перед другой. Такой метод обучения становится хорошей аппроксимацией байесовского обучения и обучения с помощью максимально апостериорной гипотезы, когда набор данных имеет большие размеры, поскольку сами данные исправляют распределение априорных вероятностей по гипотезам, но связан с возникновением определенных проблем при использовании небольших наборов данных.


 

А также другие работы, которые могут Вас заинтересовать

9485. Ненаркотические анальгетики. Психотропные средства 29.31 KB
  Ненаркотические анальгетики Производное анальгина - парацетамол - считается самым безопасным анальгетиком Нет противовоспалительного действия, т.к. ингибирует ЦОГ-3 в ЦНС, в периферических тканях синтез простогландинов не нарушается....
9486. Транквилизаторы. Психостимуляторы и антидепрессанты 28.76 KB
  Транквилизаторы Механизм действия: Анатомический субстрат - лимбическая система, гипоталамус, РФ ствола мозга, таламические ядра ГАМК-ергическое торможение - бензодизепиновые рецепторы рецепторы ГАМК ГАМК - реали...
9487. Антидепрессанты. Антигистаминные средства 43.56 KB
  Антидепрессанты Ниаламид - ингибитор МАО Производное гидразида изоникотиновой кислоты – ГИНК Устраняет боль при стенокардии, НТН (невралгия тройничного нерва) Эффект - через 7-14 дней психостимулирующее дейст...
9488. Бронхолитики. Отхаркивающие средства 30.26 KB
  Бронхолитики СБО (синдром бронхиальной обструкции): Аллергические заболевания (астматический бронхит, БА) ХОБЛ Инфекционно-воспалительные заболевания (бронхит, пневмония, ОРВИ) Пороки развития бронхолегочной системы ...
9489. Средства, влияющие на ЖКТ 32.65 KB
  Средства, влияющие на ЖКТ Группы препаратов: Рвотные и противорвотные Средства, влияющие на аппетит Желчегонные, гепатопротекторы Слабительные Средства, влияющие на секрецию желез желудка Средства заместительной т...
9490. Средства, влияющие на свертывание крови и фибринолиз 30.11 KB
  Средства, влияющие на свертывание крови и фибринолиз Препараты, препятствующие свертыванию крови, при тромбозах: антиагриганты, антикоагулянты, фибринолитики. Вторая группа средств, способствующая свертыванию, это гемостатики, коагулянты, ингибиторы...
9491. Сердечные гликозиды 29.2 KB
  Сердечные гликозиды Кардиотоники - средства, увеличивающие сократительную способность миокарда. Негликозидной структуры - короткодействующие, только при острых состояниях: Адреналина гидрохлорид (г/х) Добутамин (мимети...
9492. Антиаритмические средства 26.8 KB
  Антиаритмические средства Противоаритмические средства при передозировке СГ (сердечные гликозиды): Дифенин Лидокаин (экстрасистолы) Атропин (АВ блок) Причины аритмий: Поражение сердца (90%) - ИБС, пороки, миокардит, инф...
9493. Антиаритмические средства. Антиангинальные средства 26.75 KB
  Антиаритмические средства Аймалин (Гилуритмал): Алкалоид раувольфии Внутрь, в/м, в/в Менее токсичен Усиленеи коронарного кровотока Драже Пульснорма. Лидокаин (Ксикаин): +местный анестетик в/в капельно ...