81435

Кофакторы ферментов: ионы металлов и коферменты. Коферментные функции витаминов (на примере витаминов В6, РР, В2)

Доклад

Биология и генетика

Коферментные функции витаминов на примере витаминов В6 РР В2. Большинство ферментов для проявления ферментативной активности нуждается в низкомолекулярных органических соединениях небелковой природы коферментах и или в ионах металлов кофакторах. В ряде случаев ион металла может способствовать присоединению кофермента.

Русский

2015-02-20

115.95 KB

11 чел.

Кофакторы ферментов: ионы металлов и коферменты. Коферментные функции витаминов (на примере витаминов В6, РР, В2).

Большинство ферментов для проявления ферментативной активности нуждается в низкомолекулярных органических соединениях небелковой природы (коферментах) и/или в ионах металлов (кофакторах).

Кофакторы выполняют функцию стабилизаторов молекулы субстрата, активного центра фермента и конформации белковой молекулы фермента, а именно третичной и четвертичной структур. В некоторых случаях ионы металла служат "мостиком" между ферментом и субстратом. Они выполняют функцию стабилизаторов активного центра, облегчая присоединение к нему субстрата и протекание химической реакции. В ряде случаев ион металла может способствовать присоединению кофермента. Перечисленные выше функции выполняют такие металлы, как Mg2+, Mn2+, Zn2+, Co2+, Мо2+. В отсутствие металла эти ферменты активностью не обладают. Такие ферменты получили название "металлоэнзимы". Схематично данный процесс взаимодействия фермента, субстрата и металла можно представить следующим образом:

E-Me-S

Кофермент, локализуясь в каталитическом участке активного центра, принимает непосредственное участие в химической реакции, выступая в качестве акцептора и донора химических группировок, атомов, электронов. Кофермент может быть связан с белковой частью молекулы ковалентными и нековалентными связями. В первом случае он называется простетической группой (например, FAD, FMN, биотин, липоевая кислота). Вместе с тем известны примеры, когда кофермент присоединяется к ферменту нековалентными связями настолько прочно, что не диссоциирует от белковой молекулы, например тиаминдифосфат. Во втором случае кофермент взаимодействует с ферментом только на время химической реакции и может рассматриваться в качестве второго субстрата. Примеры - NAD+, NADP+. Апофермент обеспечивает специфичность действия и отвечает за выбор типа химического превращения субстрата. Один и тот же кофермент, взаимодействуя с различными апоферментами, может участвовать в разных химических превращениях субстрата. Например, пиридоксальфосфат в зависимости от того, с каким апоферментом взаимодействует, участвует в реакциях трансаминирования или декарбоксилирования аминокислот.

Химическая природа коферментов, их функции в ферментативных реакциях чрезвычайно разнообразны. Традиционно к коферментам относят производные витаминов, хотя помимо них есть значительный класс небелковых соединений, принимающих участие в проявлении каталитической функции ферментов.

К коферментам относят следующие соединения:

  1.  производные витаминов;
  2.  гемы, входящие в состав цитохромов, каталазы, пероксидазы, гуанилатциклазы, NO-синтазы и являющиеся простетической группой ферментов;
  3.  нуклеотиды - доноры и акцепторы остатка фосфорной кислоты;
  4.  убихинон, или кофермент Q, участвующий в переносе электронов и протонов в ЦПЭ;
  5.  фосфоаденозилфосфосульфат, участвующий в переносе сульфата;
  6.  S-аденозилметионин (SAM) - донор метильной группы;
  7.  глутатион, участвующий в окислительно-восстановительных реакциях.

Витамин РР входит в состав кофермента НАД+ и НАДФ+, который принимает участие в ферментативных реакциях по последовательному механизму. Две ферментативные реакции, катализируемые ферментами Е1 и Е2, сопряжены друг с другом посредством кофермента NAD+, служащего в каждом из этих случаев субстратом. Для первого фермента субстратом служит окисленная форма NAD, в качестве второго субстрата выступает донор водорода - пример последовательных реакций, продуктом - восстановленная форма NAD, для фермента Е2 - наоборот.

Витамин В5 – принимает участие в синтезе кофермента А (Ацетил-КоА). Кофермент А (КоА) — кофермент ацетилирования; один из важнейших коферментов; принимает участие в реакциях переноса ацильных групп. Молекула КоА состоит из остатка адениловой кислоты, связанной пирофосфатной группой с остаткомпантотеновой кислоты, соединённой пептидной связью с остатком β-меркаптоэтаноламина.

С КоА связан ряд биохимических реакций, лежащих в основе окисления и синтеза жирных кислот, биосинтеза жиров, окислительных превращений продуктов распада углеводов. Во всех случаях КоА действует в качестве промежуточного звена, связывающего и переносящего кислотные остатки на другие вещества. При этом кислотные остатки в составе соединения с КоА подвергаются тем или иным превращениям, либо передаются без изменений на определённые метаболиты.

Витамин В2 – принимает участие в формировании кофактора ФАД и ФМН. Флавинадениндинуклеотид — кофактор, принимающий участие во многих окислительно-восстановительных биохимических процессах. FAD существует в двух формах — окисленной и восстановленной, его биохимическая функция, как правило, заключается в переходе между этими формами. FAD может быть восстановлен до FADH2, при этом он принимает два атома водорода. Молекула FADH2 является переносчиком энергии и восстановленный кофермент может быть использован как субстрат в реакции окислительного фосфорилирования вмитохондрии. Молекула FADH2 окисляется в FAD, при этом выделяется энергия, эквивалентная (запасаемая в форме) двум молям ATФ.


 

А также другие работы, которые могут Вас заинтересовать

7341. Акустическое поле. Полная система уравнений акустического поля. Волновое уравнение 53 KB
  Акустическое поле. Полная система уравнений акустического поля. Волновое уравнение. Поле, особая форма материи физическая система, обладающая бесконечно большим числом степеней свободы. Примерами поля могут служить электромагнитное и гравитационное...
7342. Изучение микроконтроллера MC68HC908GP32, методики его программирования и отладки 397 KB
  Изучение микроконтроллера MC68HC908GP32, методики его программирования и отладки Цель работы: Изучение состава стенда, назначения отдельных узлов стенда. Изучение технических характеристик и состава микропроцессора MC68HC908...
7343. Режимы адресации и система команд микропроцессора 143.5 KB
  Режимы адресации и система команд микропроцессора Цель работы: Изучить систему команд микропроцессора и закрепить навыки отладки программ. Программа работы Изучить систему команд и способы адресации микропроцессора Раз...
7344. Подсистема дискретного ввода/вывода 343 KB
  Подсистема дискретного ввода/вывода Цель работы: Изучить способы организации дискретного ввода/вывода, способы управления внешними устройствами, подключенными через параллельный интерфейс. Программа работы Изучить подсистем...
7345. Широкоуниверсальный фрезерный станок модели 6Р82Ш 4.93 MB
  Современные металлорежущие станки обеспечивают исключительно высокую точность обработанных деталей. Ответственны поверхности наиболее важных деталей машин и приборов обрабатывают на станках с ЧПУ с погрешностью до доли микрометров, а шероховатость поверхности при работе алмазным инструментом не превышает сотых долей микрометра.
7346. Недвижимое имущество как объект гражданских правоотношений 59.76 KB
  Предмет исследования - совокупность правовых норм, включающих особенности возникновения, осуществления и прекращения права собственности на недвижимое имущество. Цель исследования научно обосновать теоретико-прикладные положения об особенностях гражданско-правового регулирования права собственности на недвижимое имущество.
7347. Разработка технологического процесса изготовления колеса зубчатого 200 KB
  Разработка технологического процесса изготовления колеса зубчатого. Общий раздел. Характеристика детали. Конструкторский технологический анализ детали выполнен по рабочему чертежу детали. Наименование детали - колесо зубчатое. Коле...
7348. Возникновение письменности, появление документа 145 KB
  Возникновение письменности, появление документа 1. Возникновение письменности 1.1 Основные этапы развития письма Письмо прошло длинный путь развития, который охватывает период в несколько тысяч лет. Представляя собой дополнительно к звуковому ...
7349. Сетевая организация и интернет-коммуникация 590 KB
  Сетевая организация и интернет-коммуникация Сетевое предприятие: культура, институты и организации информациональной экономики Введение Как и все исторически отчетливые формы производства, информациональная экономика характеризуется своей специфичес...