81451

Дегидрирование субстрата и окисление водорода (образование Н2О) как источник энергии для синтеза АТФ. НАД- и ФАД-зависимые дегидрогеназы, убихинон-дегидрогеназа, цитохромы и цитохромоксидаза

Доклад

Биология и генетика

Электроны обладающие высоким энергетическим потенциалом передаются от восстановленных коферментов NDH и FDH2 к кислороду через цепь переносчиков локализованных во внутренней мембране митохондрий. Они катализируют реакции типа: RCHOHR1 ND↔ RCOR1 NDH Н. Однако возможно включение электронов с NDPH в ЦПЭ благодаря действию пиридиннуклеотид трансгидрогеназы катализирующей реакцию: NDPH ND NDP NDH. К FMNсодержащим ферментам принадлежит NDHдегидрогеназа которая также локализована во внутренней мембране митохондрий; она...

Русский

2015-02-20

152.07 KB

11 чел.

Дегидрирование субстрата и окисление водорода (образование Н2О) как источник энергии для синтеза АТФ. НАД- и ФАД-зависимые дегидрогеназы, убихинон-дегидрогеназа, цитохромы и цитохромоксидаза.

Энергия освобождается в процессе ферментативного окисления метаболитов специфическими дегидрогеназами. В реакциях дегидрирования электроны и протоны переходят от органических субстратов на коферменты NAD- и FAD-зависимых дегидрогеназ. Электроны, обладающие высоким энергетическим потенциалом, передаются от восстановленных коферментов NADH и FADH2 к кислороду через цепь переносчиков, локализованных во внутренней мембране митохондрий. Восстановление молекулы О2 происходит в результате переноса 4 электронов. При каждом присоединении к кислороду 2 электронов, поступающих к нему по цепи переносчиков, из матрикса поглощаются 2 протона, в результате чего образуется молекула Н2О.

Окисление органических веществ в клетках, сопровождающееся потреблением кислорода и синтезом воды, называют тканевым дыханием, а цепь переноса электронов (ЦПЭ) - дыхательной цепью.

Электроны, поступающие в ЦПЭ, по мере их продвижения от одного переносчика к другому теряют свободную энергию. Значительная часть этой энергии запасается в форме АТФ, а часть энергии рассеивается в виде тепла. Кроме того, электроны с высоким энергетическим потенциалом, возникающие при окислении различных субстратов, могут быть использованы в реакциях биосинтеза, для которых помимо АТФ требуются восстановительные эквиваленты, например NADPH.

Перенос электронов от окисляемых субстратов к кислороду происходит в несколько этапов. В нём участвует большое количество промежуточных переносчиков, каждый из которых способен присоединять электроны от предыдущего компонента и передавать следующему. Так возникает цепь окислительно-восстановительных реакций, в результате чего происходят восстановление О2 и синтез Н2О. В дыхательную цепь митохондрий входит большое число переносчиков.

За исключением убихинона (KoQ), все компоненты ЦПЭ - белки. В составе этих белков содержатся различные небелковые компоненты: FMN, Fe в составе железо-серных белков и в составе порфириновых колец, ионы Сu.

 Первичные акцепторы водорода .Первичные акцепторы водорода окислительно-восстановительных реакций относят к 2 типам дегидрогеназ: никотинамвдзависимым, содержащим в качестве коферментов производные никотиновой кислоты, и флавинзависимым, содержащим производные рибофлавина .

Никотинамидзависимые дегидрогеназы содержат в качестве коферментов NAD+ или NADP+ (см. раздел 2). NAD+ и NADP+ - производные витамина PP. Эти коферменты входят в состав активных центров дегидрогеназ, но могут обратимо диссоциировать из комплекса с апоферментами и включаются в состав фермента в ходе реакции. Субстраты NAD- и NADP-зависимых дегидрогеназ находятся в матриксе митохондрий и в цитозоле. Рабочей частью никотинамидных коферментов служит никотинамид.

Большинство дегидрогеназ, поставляющих электроны в ЦПЭ, содержат NAD+. Они катализируют реакции типа:

R-CHOH-R1 + NAD+↔ R-CO-R1 + NADH + Н+.

Таким образом, NAD+, присоединяя протоны и электроны от различных субстратов, служит главным коллектором энергии окисляемых веществ и главным источником электронов, обладающих высоким энергетическим потенциалом, для ЦПЭ. NADPH не является непосредственным донором электронов в ЦПЭ, а используется почти исключительно в восстановительных биосинтезах . Однако возможно включение электронов с NADPH в ЦПЭ благодаря действию пиридиннуклеотид трансгидрогеназы, катализирующей реакцию:

NADPH + NAD+ ↔ NADP+ + NADH.

Флавиновые дегидрогеназы содержат в качестве коферментов FAD или FMN. Эти коферменты образуются в организме человека из витамина В2. Флавиновые коферменты прочно связаны с апоферментами. Рабочей частью FAD и FMN служит изоаллоксазиновая сопряжённая циклическая система.

FAD служит акцептором электронов от многих субстратов в реакциях типа:

R-CH2-CH2-R1 + Е (FAD) ↔ R-CH=CH-R1 + Е (FADH2),

где Е - белковая часть фермента.

Большинство FAD-зависимых дегидрогеназ - растворимые белки, локализованные в матриксе митохондрий. Исключение составляет сукцинат-дегидрогеназа, находящаяся во внутренней мембране митохондрий. К FMN-содержащим ферментам принадлежит NADH-дегидрогеназа, которая также локализована во внутренней мембране митохондрий; она окисляет NADH, образующийся в митохондриальном матриксе.

Цепь переноса электронов от NADH и FADH2 на кислород Перенос электронов от NADH к О2 включает ряд переносчиков, которые локализованы во внутренней мембране митохондрий. За исключением убихинона и цитохрома С, это сложные белковые комплексы.

NADH-дегидрогеназа (NADH-Q-редуктаза, комплекс I) состоит из нескольких полипептидных цепей. Роль простетической группы играет FMN. Единственный субстрат фермента - NADH, с которого 2 электрона и протон переносятся на FMN с образованием FMNH2. Второй протон поглощается из матрикса. Реакция протекает по уравнению:

NADH + Н+ + Е (FMN) → NAD+ + Е (FMNH2)

С FMNH2 электроны переносятся затем на ряд железо-серных белков (FeS), играющих роль второй простетической группы в молекуле NADH-дегидрогеназы. Атомы железа в этих белках (негемовое железо) собраны в несколько групп, так называемых железо-серных центров. FeS-центры входят в состав многих белков (флавопротеинов, цитохромов), участвующих в окислительно-восстановительных реакциях. Известны 3 типа FeS-центров (FeS, Fe2S2, Fe4S4), в которых атом железа связан с атомом серы остатков цистеина или неорганической серы. NADH-дегидрогеназа содержит несколько центров типа Fe2S2 и Fe4S4 Атомы железа в таких центрах могут принимать и отдавать электроны поочерёдно, переходя в ферро- (Fe2+) и ферри- (Fe3+) состояния. От железо-серных центров электроны переносятся на кофермент Q (убихинон).

Обозначение этого жирорастворимого хинона происходит от первой буквы английского названия хинона (quinone), а название убихинон отражает его широкую распространённость в природе (ubiquitous - вездесущий). Молекулы убихинона в зависимости от источника, из которого они выделены, различаются длиной углеводородной цепи, которая у млекопитающих содержит 10 изопреноидных звеньев и обозначается как Q10. В процессе переноса электронов с NADH-дегидрогеназы через FeS на убихинон он обратимо превращается в гидрохинон. Убихинон выполняет коллекторную функцию, присоединяя электроны от NADH-дегидрогеназы и других флавинзависимых дегидрогеназ, в частности, от сукцинат-дегидрогеназы. Убихинон участвует в реакциях типа:

Е (FMNH2) + Q → Е (FMN) + QH2.

Цитохромы или гемопротеины присутствуют во всех типах организмов. В клетках эукариотов они локализованы в митохондриальных мембранах и в ЭР. Известно около 30 различных цитохромов. Все цитохромы в качестве простетической группы содержат гем . Их многообразие обусловлено:

  1.  различием боковых цепей в структуре тема;
  2.  различием в структуре полипептидных цепей;
  3.  различием в способе связи полипептидных цепей с гемом.

В зависимости от способности поглощать свет в определённой части спектра все цитохромы делят на группы а, b, с. Внутри каждой группы отдельные виды с уникальными спектральными свойствами обозначают цифровыми индексами (b, b1, b2 и т.д.).

Структурные особенности разных видов цитохромов определяют различие в их окислительно-восстановительных потенциалах. В ЦПЭ участвуют 5 типов цитохромов (а, а3, b, с, с1). За исключением цитохрома с, все цитохромы находятся во внутренней мембране митохондрий в виде сложных белковых комплексов.

QН2-дегидрогеназа (коэнзим Q-цитохром с-ре-уктаза, комплекс III) состоит из 2 типов цитохромов (b1 и b2) и цитохрома с1. QН2-дегидрогеназа переносит электроны от убихинола на цитохром с. Внутри комплекса III электроны передаются от цитохромов b на FeS-центры, на цитохром с1, а затем на цитохром с. Группы тема, подобно FeS-центрам, переносят только по одному электрону. Таким образом, от молекулы QH2 2 электрона переносятся на 2 молекулы цитохрома b. В качестве промежуточного продукта в этих реакциях переноса электронов возможно образование свободного радикала се-михинона. В цитохромах типа b гем не связан ковалентно с белком, а в цитохромах с1 и с он присоединяется к белку при помощи тиоэфирных связей. Эти связи образуются путём присоединения 2 цистеиновых остатков к винильным группам гема.

Цитохром С - периферический водорастворимый мембранный белок с молекулярной массой 12 500 Д, имеющий одну полипептидную цепь из 100 аминокислотных остатков, и молекулу гема, ковалентно связанную с полипептидом.

Цитохромоксидаза (комплекс IV) состоит из 2 цитохромов типа аа3 каждый из которых имеет центр связывания с кислородом. Цитохромы а и а3 имеют характерную железопорфириновую простетическую группу, называемую гемом А и отличающуюся от гема цитохромов с и c1. Он содержит формильную группу вместо одной из метальных групп и углеводородную цепь вместо одной из винильных групп. Другая особенность комплекса а-а3 - наличие в нём ионов меди, связанных с белковой астью в так называемых CuA-центрах. Перенос электронов комплексом а-а3 включает реакции:

Cu+ ↔ Cu2+ + e, Fe2+ ↔ Fe3+ + e.

Комплекс цитохромов а-а3 непосредственно реагирует с молекулярным кислородом.

 


 

А также другие работы, которые могут Вас заинтересовать

36797. ЧАСТНЫЕ РЕАКЦИИ КАТИОНОВ II АНАЛИТИЧЕСКОЙ ГРУППЫ 80.5 KB
  Тема: ЧАСТНЫЕ РЕАКЦИИ КАТИОНОВ II АНАЛИТИЧЕСКОЙ ГРУППЫ. Перечень заданий: Частные реакции на катионы Аg. Частные реакции на катионы Pb2. Провести частные реакции на катион серебра g.
36798. Исследование распространения сигналов тональных частот по ЛЭП 6(10) кВ с использованием программной среды PSpice 93.83 KB
  Магистральные ЛЭП напряжением 110_кВ и выше, соединяющие между собой энергорайоны, при их использовании в качестве линий связи, как правило, обработываются с помощью заградителей, обходов и т.д
36799. ЧАСТНЫЕ РЕАКЦИИ КАТИОНОВ III АНАЛИТИЧЕСКОЙ ГРУППЫ 68 KB
  Тема: ЧАСТНЫЕ РЕАКЦИИ КАТИОНОВ III АНАЛИТИЧЕСКОЙ ГРУППЫ. Частные реакции на катионы Ва2. Частные реакции на катионы Са2. Частные реакции на катион Ва2.
36800. Графический растровый редактор GIMP 1.65 MB
  Далее возвращаемся на 1й слой – в данном случае это слой Рисунок 1 и создаем над ним новый с указанными ниже параметрами: Для типа заливки слоя выбираем Цвет переднего плана при этом цвет должен быть обязательно черным: Отключаем все слои кроме двух нижним с которыми мы сейчас работаем: Переходим на наш слой залитый черным цветом: Теперь берем инструмент ластик с мягкими краями и достаточно большого размера 305: Встаем в произвольном месте нашего изображения и несколько раз щелкаем по одному и тому же месту чтобы эффект ластика...
36801. ЧАСТНЫЕ РЕАКЦИИ КАТИОНОВ IV АНАЛИТИЧЕСКОЙ ГРУППЫ 72 KB
  Реактивы: NH42S lCl3 ZnCl2 CrCl3 NOH H2O NH4OH N2S HCl NH4Cl крист K4 [Fe CN 6] K3 [Fe CN 6] CH3COOH. Групповым реагентом на катионы четвертой группы является гидроксид натрия NOH в избытке. В каждую из них добавить 1 мл группового реактива – NOH. Ваши наблюдения ____________________________________________________________________________________________________________________________________________ Записать уравнения реакций в молекулярном и ионном виде: LCI3 NOH =...
36802. Структура и принцип работы полевых транзисторов, их статических характеристик и дифференциальных параметров 189.18 KB
  В данной лабораторной работе были изучены структура и принцип работы полевых транзисторов, их статические характеристики и дифференциальные параметры. Были определены пороговое напряжение, крутизна сток-затворных характеристик, внутреннее сопротивление транзисторов в режиме насыщения и в линейном режиме, вычислена удельная крутизна МОП-транзистора КП304А.
36803. ЧАСТНЫЕ РЕАКЦИИ КАТИОНОВ V АНАЛИТИЧЕСКОЙ ГРУППЫ 78 KB
  Тема: ЧАСТНЫЕ РЕАКЦИИ КАТИОНОВ V АНАЛИТИЧЕСКОЙ ГРУППЫ. Умения: Отработать практические навыки и углубить теоретические знания по частным реакциям катионов пятой группы. Нитраты хлориды сульфаты и ацетаты катионов пятой группы хорошо растворимы в воде. Соли других катионов этой же группы также подвергаются гидролизу и имеют кислую реакцию среды.
36804. Исследование интегральных оптронов 930.29 KB
  Справочные данные оптронов: АОД101Б: Обратное выходное напряжение = 100 В Обратное входное напряжение = 35 В Напряжение изоляции = 100 В Постоянный или средний входной ток = 20 мА Импульсный входной ток = 100 мА Температура окружающей среды 60.70 0САОТ101БС: Коммутируемое напряжение = 15 В Обратное входное напряжение = 15 В Напряжение изоляции = 20 В Входной ток = 20 мА Выходной ток при Iвх.