81457

Цикл лимонной кислоты: последовательность реакций и характеристика ферментов. Связь между общими путями катаболизма и цепью переноса электронов и протонов

Доклад

Биология и генетика

Цикл лимонной кислоты цитратный цикл цикл Кребса цикл трикарбоновых кислот ЦТК заключительный этап катаболизма в котором углерод ацетильного остатка ацетилКоА окисляется до 2 молекул СО2. Связь между атомами углерода в ацетилКоА устойчива к окислению. В условиях организма окисление ацетильного остатка происходит в несколько этапов образующих циклический процесс из 8 реакций: Последовательность реакций цитратного цикла Образование цитрата В реакции образования цитрата углеродный атом метильной труппы ацетилКоА связывается с...

Русский

2015-02-20

319.89 KB

3 чел.

Цикл лимонной кислоты: последовательность реакций и характеристика ферментов. Связь между общими путями катаболизма и цепью переноса электронов и протонов.

Цикл лимонной кислоты (цитратный цикл, цикл Кребса, цикл трикарбоновых кислот, ЦТК) - заключительный этап катаболизма, в котором углерод ацетильного остатка ацетил-КоА окисляется до 2 молекул СО2. Атомы водорода, освобождающиеся в окислительно-восстановительных реакциях, доставляются в ЦПЭ при участии NAD- и FAD-зависимых дегидрогеназ, в результате чего происходят синтез воды и окислительное фосфорилирование АДФ. Связь между атомами углерода в ацетил-КоА устойчива к окислению. В условиях организма окисление ацетильного остатка происходит в несколько этапов, образующих циклический процесс из 8 реакций:

Последовательность реакций цитратного цикла

  1.  Образование цитрата

В реакции образования цитрата углеродный атом метильной труппы ацетил-КоА связывается с карбонильной группой оксалоацетата; одновременно расщепляется тиоэфирная связь и освобождается коэнзим A (ΔG0' = -37,6 кДж/моль). Равновесие реакции в клетке сильно сдвинуто вправо, о чём свидетельствует отрицательная величина стандартной свободной энергии. Реакция сопровождается потерей большого количества энергии в виде теплоты. Катализирует реакцию цитрат синтаза, фермент, локализованный в матриксе митохондрий.

  1.  Превращение цитрата в изоцитрат

Вторая реакция цитратного цикла - обратимое превращение цитрата в изоцитрат (рис. 6-24). Фермент, катализирующий эту реакцию, назван аконитазой по промежуточному продукту, цис-аконитовой кислоте, которая предположительно образуется в реакции. Однако это соединение не обнаруживается в свободном виде, так как не отделяется от активного центра фермента до завершения реакции.

  1.  Окислительное декарбоксилирование изоцитрата

Эту реакцию катализирует изоцитратдегидрогеназа. Существуют 2 формы изоцитратдегидрогеназы: одна содержит в качестве коферментa NAD+, вторая - NADP+. NAD-зависимый фермент локализован в митохондриях и участвует в ЦТК; NADP-зависимый фермент, присутствующий и в митохондриях, и в цитоплазме, играет иную метаболическую роль, В результате действия этого фермента на изоцитрат образуется α-кетоглутарат Реакция, катализируемая NAD-зависимой изоцитратдегидрогеназой, - самая медленная реакция цитратного цикла. АДФ - аллостерический активатор фермента.

  1.  Окислительное декарбоксилирование α-кетоглутарата

В этой реакции α-кетоглутарат подвергается окислительному декарбоксилированию с образованием в качестве конечных продуктов сук-цинил-КоА, СО2 и NADH + Н+. В результате этой реакции образуется сукцинил-КоА Реакцию катализирует α-кетоглутаратдегидрогеназный комплекс, который по структуре и функциям сходен с пируватдегидрогеназным комплексом (ПДК). Подобно ПДК, он состоит из 3 ферментов: α-кетоглутаратдекарбоксилазы, дигидролипоилтранссукцинилазы и дигидролипоилдегидрогеназы. Кроме того, в этот ферментный комплекс входят 5 коферментов: тиаминдифосфат, кофермент А, липоевая кислота, NAD+ и FAD. Существенное отличие этой ферментной системы от ПДК - то, что она не имеет сложного механизма регуляции, какой характерен для ПДК. В частности, в этом комплексе отсутствуют регуляторные субъединицы. Равновесие реакции окислительного декарбоксилирования α-кетоглутарата сильно сдвинуто в сторону образования сукцинил-КоА, и её можно считать однонаправленной.

  1.  Превращение сукцинил-КоА в сукцинат

Сукцинил-КоА - высокоэнергетическое соединение. Изменение свободной энергии гидролиза этого тиоэфира составляет ΔG0'= -35,7 кДж/моль. В митохондриях разрыв тиоэфирной связи сук-цинил-КоА сопряжён с реакцией фосфорилирования гуанозиндифосфата (ГДФ) до гуанозинтрифосфата (ГТФ).

Сукцинил-КоА → Сукцинат (ΔG0 = -10,36 кДж/моль).

Эту сопряжённую реакцию катализирует сукцинаттиокиназа. Промежуточный этап реакции - фосфорилирование молекулы фермента по одному из гистидиновых остатков активного центра. Затем остаток фосфорной кислоты присоединяется к ГДФ с образованием ГТФ. С ГТФ концевая фосфатная группа может переноситься на АДФ с образованием АТФ; эту обратимую реакцию катализирует нуклеозид-дифосфаткиназа.

ГТФ + АДФ ↔ ГДФ + АТФ.

Образование высокоэнергетической фосфо-ангидридной связи за счёт энергии субстрата (сукцинил-КоА) - пример субстратного фосфорилирования.

  1.  Дегидрирование сукцината

Образовавшийся на предьщущем этапе сукцинат превращается в фумарат под действием сукцинатдегидрогеназы. Этот фермент - флавопротеин, молекула которого содержит прочно связанный кофермент FAD. Сукцинат дегидрогеназа прочно связана с внутренней митохондриальной мембраной. Она состоит из 2 субъединиц, одна из которых связана с FAD. Кроме того, обе субъединицы содержат железо-серные центры; одна - Fe2S2, a другая - Fe4S4. В железо-серных центрах атомы железа меняют свою валентность, участвуя в транспорте электронов.

  1.  Образование малата из фумарата

Образование малата происходит при участии фермента фумаратгидратазы. Этот фермент более известен как фумараза. Фумараза - олигомерный белок, состоящий из 4 идентичных полипептидных цепей. Он расположен в матриксе митохондрий. Фумаразу относят к ферментам с абсолютной субстратной специфичностью: она катализирует гидратацию только транс-формы фумарата.

  1.  Дегидрирование малата

В заключительной стадии цитратного цикла малат дегидрируется с образованием оксалоа-цетата. Реакцию катализирует NAD-зависимая малатдегидрогеназа, содержащаяся в матриксе митохондрий. Равновесие малатдегидрогеназной реакции сильно сдвинуто влево. Тем не менее, в интактных клетках эта реакция идёт слева направо, потому что продукт реакции, оксалоацетат, активно используется в цитратсинтазной реакции. В цитозоле содержится изоформа малат-дегидрогеназы, также NAD-зависимая, но не принимающая участие в цитратном цикле. Обе изоформы малатдегидрогеназы - димеры.


 

А также другие работы, которые могут Вас заинтересовать

13321. ВИЗНАЧЕННЯ КОЕФІЦІЄНТА ПОВЕРХНЕВОГО НАТЯГУ РІДИНИ МЕТОДОМ ВІДРИВУ КІЛЬЦЯ 168.5 KB
  Лабораторна робота № 6 ВИЗНАЧЕННЯ КОЕФІЦІЄНТА ПОВЕРХНЕВОГО НАТЯГУ РІДИНИ МЕТОДОМ ВІДРИВУ КІЛЬЦЯ. Мета роботи: а вивчення властивостей рідкого стану речовини; б визначення коефіцієнта поверхневого натягу рідини від типу речовини; в визначення залежності коефі
13322. Визначення коефіцієнта Пуасона методом Клемана і Дезорма 473 KB
  Лабораторна робота №8 Визначення коефіцієнта Пуасона методом Клемана і Дезорма. Мста роботи: аВивчення законів ідеального газу. бЕкспериментальне визначення показника адіабати. Прилади і матеріали: балон з двома кранами рідинний манометр ручний насос. Кор...
13323. Визначення теплоти розчинення солі 460 KB
  Лабораторна робота № 9. Визначення теплоти розчинення солі. Мета роботи: адослідним шляхом визначити теплоту розчинення солі; бустановити залежність теплоти розчинення солі від концентрації розчину. Прилади та матеріали: посудина Дюара термометр мензурка сі...
13324. ВИЗНАЧЕННЯ КОЕФІЦІЄНТА ВНУТРІШНЬОГО ТЕРТЯ ТА СЕРЕДНЬОЇ ДОВЖИНИ ВІЛЬНОГО ПРОБІГУ МОЛЕКУЛ ПОВІТРЯ 400 KB
  Лабораторна робота № 10 ВИЗНАЧЕННЯ КОЕФІЦІЄНТА ВНУТРІШНЬОГО ТЕРТЯ ТА СЕРЕДНЬОЇ ДОВЖИНИ ВІЛЬНОГО ПРОБІГУ МОЛЕКУЛ ПОВІТРЯ Мета роботи: а вивчення основних законів молекулярнокінетичної теорії газів; б експериментальне визначення основних параметрів молекулярн...
13325. ВИЗНАЧЕННЯ КОЕФІЦІЄНТА ЛІНІЙНОГО РОЗШИРЕННЯ ТВЕРДИХ ТІЛ 696 KB
  Лабораторна робота №11 ВИЗНАЧЕННЯ КОЕФІЦІЄНТА ЛІНІЙНОГО РОЗШИРЕННЯ ТВЕРДИХ ТІЛ Мета роботи: авивчення термічного розширення твердих тіл; бекспериментальне визначення коефіцієнта лінійного розширення різних матеріалів. Прилади та матеріали: прилад для в...
13326. Визначення вязкості рідини капілярним віскозиметром 365 KB
  Лабораторна робота № 12 Визначення вязкості рідини капілярним віскозиметром. Мета роботи: авивчення властивостей рідини; бекспериментальне визначення коефіцієнта вязкості рідини. Прилади та матеріали: віскозиметр секундомір спирт дистильована вод
13327. Визначення коефіцієнта поверхневого натягу методом Ребіндера 223 KB
  Лабораторна робота №7 Визначення коефіцієнта поверхневого натягу методом Ребіндера. Мета роботи: аВизначення властивостей рідини: бВивчення методів та експериментальне визначення коефіцієнта поверхневого натягу. Прилади та матеріали: аспіратор установка
13328. Комп’ютерний вибір оптимальних однорідних термоелектричних матеріалів для термоелектрики 29.5 KB
  Звіт до лабораторної роботи № 1 Комп’ютерний вибір оптимальних однорідних термоелектричних матеріалів для термоелектрики Мета роботи Використовуючи експериментальні дані кінетичних коефіцієнтів навчитись проводити раціональний вибір термоелектричного мат
13329. Моделювання матеріалу n – типу провідності на основі Bi - Sb в оптимальному магнітному полі для низькотемпературного охолодження 27 KB
  Звіт до лабораторної роботи № 2 Моделювання матеріалу n – типу провідності на основі Bi Sb в оптимальному магнітному полі для низькотемпературного охолодження Мета роботи Використовуючи експериментальні залежності коефіцієнтів Зеебека α електропровідності σ ...