81460

Глюкоза как важнейший метаболит углеводного обмена. Общая схема источников и путей расходования глюкозы в организме

Доклад

Биология и генетика

Общая схема источников и путей расходования глюкозы в организме Глюкоза является альдогексозой. Циклическая форма глюкозы предпочтительная в термодинамическом отношении обусловливает химические свойства глюкозы. Расположение Н и ОНгрупп относительно пятого углеродного атома определяет принадлежность глюкозы к D или Lряду. В организме млекопитающих моносахариды находятся в Dконфигурации так как к этой форме глюкозы специфичны ферменты катализирующие её превращения.

Русский

2015-02-20

139.63 KB

16 чел.

Глюкоза как важнейший метаболит углеводного обмена. Общая схема источников и путей расходования глюкозы в организме

Глюкоза является альдогексозой. Она может существовать в линейной и циклической формах. Циклическая форма глюкозы, предпочтительная в термодинамическом отношении, обусловливает химические свойства глюкозы. Как и все гексозы, глюкоза имеет 4 асимметричных углеродных атома, обусловливающих наличие сте-реоизомеров. Возможно образование 16 стереоизомеров, наиболее важные из которых D- и L-глюкоза. Эти типы изомеров зеркально отображают друг друга. Расположение Н- и ОН-групп относительно пятого углеродного атома определяет принадлежность глюкозы к D- или L-ряду. В организме млекопитающих моносахариды находятся в D-конфигурации, так как к этой форме глюкозы специфичны ферменты, катализирующие её превращения. В растворе при образовании циклической формы моносахарида образуются ещё 2 изомера (α- и β-изомеры), называемые аномерами, обозначающие определённую конформацию Н- и ОН-групп относительно С, У α-D-глюкозы ОН-группа располагается ниже плоскости кольца, а у β-D-глюкозы, наоборот, над плоскостью кольца. Поскольку в составе основных углеводов пищи преобладает глюкоза, её можно считать основным продуктом переваривания углеводов. Другие моносахариды, поступающие из кишечника в процессе метаболизма, могут превращаться в глюкозу или продукты её метаболизма. Часть глюкозы в печени депонируется в виде гликогена, а другая часть через общий кровоток доставляется и используется разными тканями и органами. При нормальном рационе питания концентрация глюкозы в крови поддерживается на уровне -3,3-5,5 ммоль/л (60-100 мг/дл). А в период пищеварения её концентрация может повышаться примерно до 150 мг/дл (8 ммоль/л).

Фософорилирование глюкозы В дальнейших превращениях в клетках глюкоза и другие моносахариды участвуют только в виде фосфорных эфиров. Фосфорилирование свободных моносахаридов - обязательная реакция на пути их использования, она приводит к образованию более реакционно-способных соединений и поэтому может рассматриваться как реакция активации. Глюкоза, поступающая в клетки органов и тканей, сразу же подвергается фосфорилированию с использованием АТФ. Эту реакцию во многих тканях катализирует фермент гексокиназа, а в печени и поджелудочной железе - фермент глюкокиназа. Фосфорилирование глюкозы - практически необратимая реакция, так как она протекает с использованием значительного количества энергии. Образование глюкозо-6-фосфата в клетке - своеобразная "ловушка" для глюкозы, так как мембрана клетки непроницаема для фосфорилированной глюкозы (нет соответствующих транспортных белков). Кроме того, Фосфорилирование уменьшает концентрацию свободной глюкозы в цитоплазме. В результате создаются благоприятные условия для облегчённой диффузии глюкозы в клетки из крови.

Глюкокиназа. Фосфорилирование глюкозы в гепатоцитах в период пищеварения обеспечивается свойствами глюкокиназы, которая имеет высокое значение Кm - 10 ммоль/л. В этот период концентрация глюкозы в воротной вене больше, чем в других отделах кровяного русла и может превышать 10 ммоль/л, а следовательно, активность глюкокиназы в гепатоцитах повышается. Следует отметить, что активность глюкокиназы, в отличие от гексокиназы, не ингибируется продуктом катализируемой реакции - глюкозо-6-фосфатом. Это обстоятельство обеспечивает повышение концентрации глюкозы в клетке в фосфорилированной форме, соответственно её уровню в крови. Как уже упоминалось, глюкоза проникает в гепатоциты путём облегчённой диффузии при участии транспортёра ГЛЮТ-2 (независимого от инсулина). ГЛЮТ-2, так же, как глюкокиназа, имеет высокую Кm, что способствует повышению скорости поступления глюкозы в гепатоциты в период пищеварения, следовательно, ускоряет её фосфорилирование и дальнейшее использование для депонирования. Хотя инсулин и не влияет на транспорт глюкозы, он усиливает приток глюкозы в гепатоциты в период пищеварения косвенным путём, индуцируя синтез глюкокиназы и ускоряя тем самым Фосфорилирование глюкозы. Преимущественное потребление глюкозы гепатоцитами, обусловленное свойствами глюкокиназы, предотвращает чрезмерное повышение её концентрации в крови в абсорбтивном периоде. Это, в свою очередь, снижает последствия протекания нежелательных реакций с участием глюкозы, например гликозилирования белков.

Гексокиназа отличается от глюкокиназы высоким сродством к глюкозе (Кm <0,1 ммоль/л). Следовательно, этот фермент, в отличие от глюкокиназы, активен при низкой концентрации глюкозы в крови, что характерно для постабсорбтивного состояния. Печень в этот период поглощает гораздо меньше глюкозы, так как скорость её внутриклеточного фосфорилирования глюкокиназой резко снижается. Тогда как потребление глюкозы мозгом, эритроцитами и другими тканями обеспечивается активной в этих условиях гексокиназой. Фермент гексокиназа может катализировать фосфорилирование не только D-глюкозы, но и других гексоз, хотя и с меньшей скоростью. Активность гексокиназы изменяется в зависимости от потребностей клетки в энергии. В качестве регуляторов выступают соотношение АТФ/АДФ и внутриклеточный уровень глюкозо-6-фосфата (продукта катализируемой реакции). При снижении расхода энергии в клетке повышается уровень АТФ (относительно АДФ) и глюкозо-6-фосфата. В этом случае активность гексокиназы снижается, и, следовательно, уменьшается скорость поступления глюкозы в клетку. Следует отметить, что в разных тканях гексокиназа присутствует в различных изоформах, отличающихся величиной Кm. Глюкокиназа печени (и почек) является изоформой IV (гексокиназа IV). В клетках мышц содержится гексокиназа II, а в клетках опухолевых тканей преобладает гексокиназа III, с более высоким, чем у гексокиназы II, сродством к глюкозе.

Дефосфорилирование глюкозо-6-фосфата Превращение глюкозо-6-фосфата в глюкозу возможно в печени, почках и клетках эпителия кишечника. В клетках этих органов имеется фермент глюкозо-6-фосфатаза, катализирующая отщепление фосфатной группы гидролитическим путём:

Глюкозо-6-фосфат +Н2О → Глюкоза + Н3РО4

Образовавшаяся свободная глюкоза способна диффундировать из этих органов в кровь. В других органах и тканях глюкозо-6-фосфатазы нет, и поэтому дефосфорилирование глюкозо-6-фосфата невозможно. Пример подобного необратимого проникновения глюкозы в клетку - мышцы, где глюкозо-6-фосфат может использоваться только в метаболизме этой клетки.

Метаболизм глюкозо-6-фосфата Глюкозо-6-фосфат может использоваться в клетке в различных превращениях, основными из которых являются: синтез гликогена, катаболизм с образованием СО2 и Н2О или лактата, синтез пентоз. Распад глюкозы до конечных продуктов служит источником энергии для организма. Вместе с тем в процессе метаболизма глюкозо-6-фосфата образуются промежуточные продукты, используемые в дальнейшем для синтеза аминокислот, нуклеотидов, глицерина и жирных кислот. Таким образом, глюкозо-6-фосфат - не только субстрат для окисления, но и строительный материал для синтеза новых соединений

.


 

А также другие работы, которые могут Вас заинтересовать

4261. Изучение системных средств языка ассемблер 15.42 KB
  Изучение системных средств языка ассемблер Цель работы: научиться работать в среде программирования Ассемблера Выполнение работы: 1. Для вызова редактора нажать клавиши SHIFT + F4. В редакторе набрать текст программы и затем сохранить с расширением ...
4262. Парадигмы программирования 37.57 KB
  Парадигмы программирования Парадигма программирования — это система идей и понятий, определяющих стиль написания компьютерных программ, а также образ мышления программиста. Развитие парадигм программирования Знакомое нам из курса философии слов...
4263. Разница между CPU и GPU в параллельных расчётах 68.36 KB
  Разница между CPU и GPU в параллельных расчётах Рост частот универсальных процессоров упёрся в физические ограничения и высокое энергопотребление, и увеличение их производительности всё чаще происходит за счёт размещения нескольких ядер в одном чипе...
4264. Области применения параллельных расчётов на GPU 257.34 KB
  Области применения параллельных расчётов на GPU. Чтобы понять, какие преимущества приносит перенос расчётов на видеочипы, приведём усреднённые цифры, полученные исследователями по всему миру. В среднем, при переносе вычислений на GPU, во многих зада...
4265. Возможности NVIDIA CUDA 17.64 KB
  Возможности NVIDIA CUDA Технология CUDA — это программно-аппаратная вычислительная архитектура NVIDIA, основанная на расширении языка Си, которая даёт возможность организации доступа к набору инструкций графического ускорителя и управления его ...
4266. Решения с поддержкой NVIDIA CUDA 71.41 KB
  Решения с поддержкой NVIDIA CUDA Все видеокарты, обладающие поддержкой CUDA, могут помочь в ускорении большинства требовательных задач, начиная от аудио- и видеообработки, и заканчивая медициной и научными исследованиями. Единственное реальное огран...
4267. Состав NVIDIA CUDA. Модель программирования CUDA 118.94 KB
  Состав NVIDIA CUDA CUDA включает два API: высокого уровня (CUDA Runtime API) и низкого (CUDA Driver API), хотя в одной программе одновременное использование обоих невозможно, нужно использовать или один или другой. Высокоуровневый работает «сверху» ...
4269. Программирование на С#. Методические указания к лабораторным работам. А.Ю. Демин, В.А. Дорофеев 2.25 MB
  А.Ю. Демин, В.А. Дорофеев. Программирование на С#. Томский политехнический университет. В пособии рассматривается введение в язык программирования С#, основные конструкции языка и типы данных, среда разработки visual Studio 2010, работа с базовыми элементами управления. Содержится указания и задания для выполнения лабораторных работ. Текстовый вариант предназначен для ознакомления. Полный обновленный вариант находится в файле который Вы можете скачать бесплатно.