81460

Глюкоза как важнейший метаболит углеводного обмена. Общая схема источников и путей расходования глюкозы в организме

Доклад

Биология и генетика

Общая схема источников и путей расходования глюкозы в организме Глюкоза является альдогексозой. Циклическая форма глюкозы предпочтительная в термодинамическом отношении обусловливает химические свойства глюкозы. Расположение Н и ОНгрупп относительно пятого углеродного атома определяет принадлежность глюкозы к D или Lряду. В организме млекопитающих моносахариды находятся в Dконфигурации так как к этой форме глюкозы специфичны ферменты катализирующие её превращения.

Русский

2015-02-20

139.63 KB

15 чел.

Глюкоза как важнейший метаболит углеводного обмена. Общая схема источников и путей расходования глюкозы в организме

Глюкоза является альдогексозой. Она может существовать в линейной и циклической формах. Циклическая форма глюкозы, предпочтительная в термодинамическом отношении, обусловливает химические свойства глюкозы. Как и все гексозы, глюкоза имеет 4 асимметричных углеродных атома, обусловливающих наличие сте-реоизомеров. Возможно образование 16 стереоизомеров, наиболее важные из которых D- и L-глюкоза. Эти типы изомеров зеркально отображают друг друга. Расположение Н- и ОН-групп относительно пятого углеродного атома определяет принадлежность глюкозы к D- или L-ряду. В организме млекопитающих моносахариды находятся в D-конфигурации, так как к этой форме глюкозы специфичны ферменты, катализирующие её превращения. В растворе при образовании циклической формы моносахарида образуются ещё 2 изомера (α- и β-изомеры), называемые аномерами, обозначающие определённую конформацию Н- и ОН-групп относительно С, У α-D-глюкозы ОН-группа располагается ниже плоскости кольца, а у β-D-глюкозы, наоборот, над плоскостью кольца. Поскольку в составе основных углеводов пищи преобладает глюкоза, её можно считать основным продуктом переваривания углеводов. Другие моносахариды, поступающие из кишечника в процессе метаболизма, могут превращаться в глюкозу или продукты её метаболизма. Часть глюкозы в печени депонируется в виде гликогена, а другая часть через общий кровоток доставляется и используется разными тканями и органами. При нормальном рационе питания концентрация глюкозы в крови поддерживается на уровне -3,3-5,5 ммоль/л (60-100 мг/дл). А в период пищеварения её концентрация может повышаться примерно до 150 мг/дл (8 ммоль/л).

Фософорилирование глюкозы В дальнейших превращениях в клетках глюкоза и другие моносахариды участвуют только в виде фосфорных эфиров. Фосфорилирование свободных моносахаридов - обязательная реакция на пути их использования, она приводит к образованию более реакционно-способных соединений и поэтому может рассматриваться как реакция активации. Глюкоза, поступающая в клетки органов и тканей, сразу же подвергается фосфорилированию с использованием АТФ. Эту реакцию во многих тканях катализирует фермент гексокиназа, а в печени и поджелудочной железе - фермент глюкокиназа. Фосфорилирование глюкозы - практически необратимая реакция, так как она протекает с использованием значительного количества энергии. Образование глюкозо-6-фосфата в клетке - своеобразная "ловушка" для глюкозы, так как мембрана клетки непроницаема для фосфорилированной глюкозы (нет соответствующих транспортных белков). Кроме того, Фосфорилирование уменьшает концентрацию свободной глюкозы в цитоплазме. В результате создаются благоприятные условия для облегчённой диффузии глюкозы в клетки из крови.

Глюкокиназа. Фосфорилирование глюкозы в гепатоцитах в период пищеварения обеспечивается свойствами глюкокиназы, которая имеет высокое значение Кm - 10 ммоль/л. В этот период концентрация глюкозы в воротной вене больше, чем в других отделах кровяного русла и может превышать 10 ммоль/л, а следовательно, активность глюкокиназы в гепатоцитах повышается. Следует отметить, что активность глюкокиназы, в отличие от гексокиназы, не ингибируется продуктом катализируемой реакции - глюкозо-6-фосфатом. Это обстоятельство обеспечивает повышение концентрации глюкозы в клетке в фосфорилированной форме, соответственно её уровню в крови. Как уже упоминалось, глюкоза проникает в гепатоциты путём облегчённой диффузии при участии транспортёра ГЛЮТ-2 (независимого от инсулина). ГЛЮТ-2, так же, как глюкокиназа, имеет высокую Кm, что способствует повышению скорости поступления глюкозы в гепатоциты в период пищеварения, следовательно, ускоряет её фосфорилирование и дальнейшее использование для депонирования. Хотя инсулин и не влияет на транспорт глюкозы, он усиливает приток глюкозы в гепатоциты в период пищеварения косвенным путём, индуцируя синтез глюкокиназы и ускоряя тем самым Фосфорилирование глюкозы. Преимущественное потребление глюкозы гепатоцитами, обусловленное свойствами глюкокиназы, предотвращает чрезмерное повышение её концентрации в крови в абсорбтивном периоде. Это, в свою очередь, снижает последствия протекания нежелательных реакций с участием глюкозы, например гликозилирования белков.

Гексокиназа отличается от глюкокиназы высоким сродством к глюкозе (Кm <0,1 ммоль/л). Следовательно, этот фермент, в отличие от глюкокиназы, активен при низкой концентрации глюкозы в крови, что характерно для постабсорбтивного состояния. Печень в этот период поглощает гораздо меньше глюкозы, так как скорость её внутриклеточного фосфорилирования глюкокиназой резко снижается. Тогда как потребление глюкозы мозгом, эритроцитами и другими тканями обеспечивается активной в этих условиях гексокиназой. Фермент гексокиназа может катализировать фосфорилирование не только D-глюкозы, но и других гексоз, хотя и с меньшей скоростью. Активность гексокиназы изменяется в зависимости от потребностей клетки в энергии. В качестве регуляторов выступают соотношение АТФ/АДФ и внутриклеточный уровень глюкозо-6-фосфата (продукта катализируемой реакции). При снижении расхода энергии в клетке повышается уровень АТФ (относительно АДФ) и глюкозо-6-фосфата. В этом случае активность гексокиназы снижается, и, следовательно, уменьшается скорость поступления глюкозы в клетку. Следует отметить, что в разных тканях гексокиназа присутствует в различных изоформах, отличающихся величиной Кm. Глюкокиназа печени (и почек) является изоформой IV (гексокиназа IV). В клетках мышц содержится гексокиназа II, а в клетках опухолевых тканей преобладает гексокиназа III, с более высоким, чем у гексокиназы II, сродством к глюкозе.

Дефосфорилирование глюкозо-6-фосфата Превращение глюкозо-6-фосфата в глюкозу возможно в печени, почках и клетках эпителия кишечника. В клетках этих органов имеется фермент глюкозо-6-фосфатаза, катализирующая отщепление фосфатной группы гидролитическим путём:

Глюкозо-6-фосфат +Н2О → Глюкоза + Н3РО4

Образовавшаяся свободная глюкоза способна диффундировать из этих органов в кровь. В других органах и тканях глюкозо-6-фосфатазы нет, и поэтому дефосфорилирование глюкозо-6-фосфата невозможно. Пример подобного необратимого проникновения глюкозы в клетку - мышцы, где глюкозо-6-фосфат может использоваться только в метаболизме этой клетки.

Метаболизм глюкозо-6-фосфата Глюкозо-6-фосфат может использоваться в клетке в различных превращениях, основными из которых являются: синтез гликогена, катаболизм с образованием СО2 и Н2О или лактата, синтез пентоз. Распад глюкозы до конечных продуктов служит источником энергии для организма. Вместе с тем в процессе метаболизма глюкозо-6-фосфата образуются промежуточные продукты, используемые в дальнейшем для синтеза аминокислот, нуклеотидов, глицерина и жирных кислот. Таким образом, глюкозо-6-фосфат - не только субстрат для окисления, но и строительный материал для синтеза новых соединений

.


 

А также другие работы, которые могут Вас заинтересовать

73021. ИЗМЕРЕНИЕ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ДЕТАЛЕЙ МИКРОМЕТРИЧЕСКИМИ ИНСТРУМЕНТАМИ 1.23 MB
  Особенности конструкции и принцип работы микрометрического инструмента. Навертывая гайку 6 на коническую часть хвостика можно уменьшить осевой люфт микрометрического винта 7 который перемещается внутри стебля по резьбовой поверхности с шагом резьбы.
73022. ПЛОСКОПАРАЛЛЕЛЬНЫЕ КОНЦЕВЫЕ МЕРЫ 479.5 KB
  Инструменты: набор плоскопараллельных концевых мер длины; принадлежности к наборам плоскопараллельных концевых мер. Задание: составить блоки плиток по заданным размерам. Плоскопараллельные концевые меры длины составляют основу современных линейных измерений в машиностроении.
73023. СОЗДАНИЕ ЛОГИЧЕСКОЙ МОДЕЛИ ДАННЫХ В IDEF1X 306 KB
  Она включает сущности и взаимосвязи отражающие основные бизнес-правила предметной области. Такая диаграмма не слишком детализирована в нее включаются основные сущности и связи между ними которые удовлетворяют основным требованиям предъявляемым к ИС.
73024. Ввод, редактирование и форматирование текста в Word 61 KB
  Изучить основные приемы ввода редактирования и форматирования текста; Контрольные вопросы Каково назначение программы Word Как изменить формат слова формат абзаца Как удалить ненужную часть текста Как изменить параметры страницы Как переместить и скопировать текст...
73025. Работа с таблицами в Word 130 KB
  Таблица представляет собой сетку из столбцов и строк, образующих ячейки, в которые можно поместить тексты и рисунки. Небольшие таблицы создают с помощью кнопки Добавить таблицу на панели инструментов
73026. Ввод, форматирование данных и составление формул 126 KB
  Цель работы: С помощью команды Формат Ячейки отформатируйте данные столбца D денежным форматом без десятичных разрядов. С помощью кнопки Формат по образцу скопируйте формат столбца D в E. Кнопками панели Форматирования задайте в столбце F процентный формат с двумя разрядами после запятой.
73027. Построение и редактирование диаграмм в Excel 160 KB
  Научиться строить диаграммы с помощью Мастера; Научиться редактировать диаграммы. Контрольные вопросы Каково назначение диаграмм Какие виды диаграмм вам известны Как построить диаграмму на отдельном листе Как изменить тип диаграммы Как удалить диаграмму...
73028. Моделирование файловых систем 147.5 KB
  Пользователи дают файлам символьные имена при этом учитываются определенные ограничения ОС. В каталоге содержится список файлов входящих в него и устанавливается соответствие между файлами и их характеристиками атрибутами.
73029. Визначення структурно-фазового складу НВМ, що містить ВНТ, методами рентгенівської дифракції та електронної мікроскопії 1.5 MB
  Визначити структурно-фазовий склад НВМ що містить ВНТ за даними рентгенівської дифракції та електронної мікроскопії. Дослідити зміну структурнофазового складу НВМ в процесі термохімічної обробки.