81474

Биосинтез и использование кетоновых тел в качестве источников энергии

Доклад

Биология и генетика

В результате скорость образования ацетилКоА превышает способность ЦТК окислять его. АцетилКоА накапливается в митохондриях печени и используется для синтеза кетоновых тел. Синтез кетоновых тел начинается с взаимодействия двух молекул ацетилКоА которые под действием фермента тиолазы образуют ацетоацетилКоА. С ацетоацетилКоА взаимодействует третья молекула ацетилКоА образуя 3гидрокси3метилглутарилКоА ГМГКоА.

Русский

2015-02-20

127.33 KB

3 чел.

Биосинтез и использование кетоновых тел в качестве источников энергии

При голодании, длительной физической работе и в случаях, когда клетки не получают достаточного количества глюкозы, жирные кислотыиспользуются многими тканями как основной источник энергии. В отличие от других тканей мозг и другие отделы нервной ткани практически не используют жирные кислоты в качестве источника энергии. В печени часть жирных кислот превращается в кетоновые тела, которые окисляются мозгом, нервной тканью, мышцами, обеспечивая достаточное количество энергии для синтеза АТФ и уменьшая потребление глюкозы. К кетоновым телам относят β-гидроксибутират, ацетоацетат и ацетон. Первые две молекулы могут окисляться в тканях, обеспечивая синтез АТФ. Ацетон образуется только при высоких концентрациях кетоновых тел в крови и, выделяясь с мочой, выдыхаемым воздухом и потом, позволяет организму избавляться от избытка кетоновых тел.

Синтез кетоновых тел в печени. При низком соотношении инсулин/глюкагон в крови в жировой ткани активируется распад жиров. Жирные кислоты поступают в печень в большем количестве, чем в норме, поэтому увеличивается скорость β-окисления. Скорость реакций ЦТК в этих условиях снижена, так как оксалоацетат используется для глюконеогенеза. В результате скорость образования ацетил-КоА превышает способность ЦТК окислять его. Ацетил-КоА накапливается в митохондриях печени и используется для синтеза кетоновых тел. Синтез кетоновых тел происходит только в митохондриях печени.

Синтез кетоновых тел начинается с взаимодействия двух молекул ацетил-КоА, которые под действием фермента тиолазы образуют ацетоацетил-КоА. С ацетоацетил-КоА взаимодействует третья молекула ацетил-КоА, образуя 3-гидрокси-3-метилглутарил-КоА (ГМГ-КоА). Эту реакцию катализирует фермент ГМГ-КоА-синтаза. Далее ГМГ-КоА-лиаза катализирует расщепление ГМГ-КоА на свободный ацетоацетат и ацетил-КоА. Ацетоацетат может выделяться в кровь или превращаться в печени в другое кетоновое тело - β-гидроксибутират путём восстановления. В клетках печени при активном β-окислении создаётся высокая концентрация NADH. Это способствует превращению большей части ацетоацетата в β-гидроксибутират, поэтому основное кетоновое тело в крови - именно β-гидроксибутират. При голодании для многих тканей жирные кислоты и кетоновые тела становятся основными топливными молекулами. Глюкоза используется в первую очередь нервной тканью и эритроцитами. При высокой концентрации ацетоацетата часть его неферментативно декарбоксилируется, превращаясь в ацетон. Ацетон не утилизируется тканями, но выделяется с выдыхаемым воздухом и мочой. Таким путём организм удаляет избыточное количество кетоновых тел, которые не успевают окисляться, но, являясь водорастворимыми кислотами, вызывают ацидоз. При длительном голодании кетоновые тела становятся основным источником энергии для скелетных мышц, сердца и почек. Таким образом глюкоза сохраняется для окисления в мозге и эритроцитах. Уже через 2-3 дня после начала голодания концентрация кетоновых тел в крови достаточна для того, чтобы они проходили в клетки мозга и окислялись, снижая его потребности в глюкозе. β-Гидроксибутират , попадая в клетки, дегидрируется NAD-зависимой дегидрогеназой и превращается в ацетоацетат. Ацетоацетат активируется, взаимодействуя с сук-цинил-КоА - донором КоА:

Ацетоацетат + Сукцинил-КоА → Ацетоацетил- КоА + Сукцинат.

Реакцию катализирует сукцинил-КоА-ацето-ацетат-КоА-трансфераза. Этот фермент не синтезируется в печени, поэтому печень не использует кетоновые тела как источники энергии, а производит их "на экспорт". Кетоновые тела - хорошие топливные молекулы; окисление одной молекулы β-гидроксибутирата до СО2 и Н2О обеспечивает синтез 27 молекул АТФ. Эквивалент одной макроэргической связи АТФ (в молекуле сукцинил-КоА) используется на активацию ацетоацетата, поэтому суммарный выход АТФ при окислении одной молекулы β-гидроксибутирата - 26 молекул.


 

А также другие работы, которые могут Вас заинтересовать

51530. Определить горизонтальную составляющую индукции магнитного поля Земли 532.5 KB
  В этом случае к генератору подсоединяются последовательно только амперметр и магазин сопротивлений Rдоб. Установили на магазине сопротивлений какоелибо значение Rдоб например Rдоб = 3000 Ом и получите на экране осциллографа устойчивую картину изображенную на рис. Измерили величину =0 и определили разность фаз колебаний входного напряжения и напряжения на активном сопротивлении Rдоб φ=0 А=04 В. Δа=0049 кОм Rдоб=34 кОм ΔR=003 кОм χ2=356.
51531. ИЗУЧЕНИЕ ЗАКОНОВ ПЕРЕМЕННОГО ТОКА 3.44 MB
  При этом в цепи возникает переменный электрический ток. С помощью переключателя К катушка индуктивности может быть отключена от цепи. Замыкание кнопочного переключателя К4 приводит к отключению емкости от цепи. Для определения действующего значения силы тока в цепи используется вольтметр универсальный цифровой на котором должен быть установлен режим измерения силы переменного тока m.
51532. ИЗУЧЕНИЕ СЛОЖЕНИЯ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ С ПОМОЩЬЮ ОСЦИЛЛОГРАФА 2.12 MB
  Устройство и принцип работы электронного осциллографа рассмотрены в Приложении 1. Электронный осциллограф С1137 может работать в двух основных режимах: а Исследуемый сигнал подается на вход канала вертикального отклонения осциллографа вход I или II а на вход канала горизонтального отклонения подается пилообразное напряжение с генератора развертки встроенного в осциллограф. При этом на экране осциллографа наблюдается график зависимости исследуемого сигнала от времени.
51533. Определение длины электромагнитной волны по методу Лехера 72 KB
  Электромагнитные волны можно пролучить и в двухпроводной линии если ее подключить к высокочастотному источнику тока рис. При малой частоте генератора тока смещения можно пренебречь по сравнению с токами проводимости и в этом случае электромагнитные явления существенно зависят от сопротивлений линии т. Пусть в точке О двухпроводной линии рис. Электрическое поле будет распространяться вдоль линии и в произвольной точке D1 отстоящей от О на ростоянии х также возникнут гармонические колебания вектора .