81477

Биосинтез жиров в печени из углеводов. Структура и состав транспортных липопротеинов крови

Доклад

Биология и генетика

В жировой ткани для синтеза жиров используются в основном жирные кислоты освободившиеся при гидролизе жиров ХМ и ЛПОНП. Молекулы жиров в адипоцитах объединяются в крупные жировые капли не содержащие воды и поэтому являются наиболее компактной формой хранения топливных молекул. В гладком ЭР гепатоцитов жирные кислоты активируются и сразу же используются для синтеза жиров взаимодействуя с глицерол3фосфатом.

Русский

2015-02-20

153.12 KB

0 чел.

Биосинтез жиров в печени из углеводов. Структура и состав транспортных липопротеинов крови.

В жировой ткани для синтеза жиров используются в основном жирные кислоты, освободившиеся при гидролизе жиров ХМ и ЛПОНП. Жирные кислоты поступают в адипоциты, превращаются в производные КоА и взаимодействуют с глицерол-3-фосфатом, образуя сначала лизофосфатидную кислоту, а затем фосфатидную. Фосфатидная кислота после дефосфорилирования превращается в диацилглицерол, который ацилируется с образованием триацилглицерола.

Кроме жирных кислот, поступающих в адипоциты из крови, в этих клетках идёт и синтез жирных кислот из продуктов распада глюкозы. В адипоцитах для обеспечения реакций синтеза жира распад глюкозы идёт по двум путям: гликолиз, обеспечивающий образование глицерол-3-фосфата и ацетил-КоА, и пентозофосфатный путь, окислительные реакции которого обеспечивают образование NADPH, служащего донором водорода в реакциях синтеза жирных кислот.

Молекулы жиров в адипоцитах объединяются в крупные жировые капли, не содержащие воды, и поэтому являются наиболее компактной формой хранения топливных молекул. Подсчитано, что, если бы энергия, запасаемая в жирах, хранилась в форме сильно гидратированных молекул гликогена, то масса тела человека увеличилась бы на 14-15 кг. Печень - основной орган, где идёт синтез жирных кислот из продуктов гликолиза. В гладком ЭР гепатоцитов жирные кислоты активируются и сразу же используются для синтеза жиров, взаимодействуя с глицерол-3-фосфатом. Как и в жировой ткани, синтез жиров идёт через образование фосфатидной кислоты. Синтезированные в печени жиры упаковываются в ЛПОНП и секретируются в кровь

Типы липопротеинов

Хиломикроны (ХМ)

ЛПОНП

ЛППП

ЛПНП

ЛПВП

Состав, %

 

 

 

 

 

Белки

2

10

11

22

50

ФЛ

3

18

23

21

27

ХС

2

7

8

8

4

ЭХС

3

10

30

42

16

ТАГ

85

55

26

7

3

Функции

Транспорт липидов из клеток кишечника(экзогенных липидов)

Транспорт липидов, синтезируемых в печени (эндогенных липидов)

Промежуточная форма превращения ЛПОНП в ЛПНП под действием фермента ЛП-липазы

Транспорт холестерола в ткани

Удаление избытка холестерола из клеток и других липопротеинов. Донор апопротеинов А, С-П

Место образования

Эпителий тонкого кишечника

Клетки печени

Кровь

Кровь (из ЛПОНП и ЛППП)

Клетки печени - ЛПВП-пред-шественники

Плотность, г/мл

0,92-0,98

0,96-1,00

 

1,00-1,06

1,06-1,21

Диаметр частиц, нМ

Больше 120

30-100

 

21-100

7-15

Основные аполипопротеины

В-48 С-П Е

В-100 С-П Е

В-100 Е

В-100

A-I С-II Е

В состав ЛПОНП, кроме жиров, входят холестерол, фосфолипиды и белок - апоВ-100. Это очень "длинный" белок, содержащий 11 536 аминокислот. Одна молекула апоВ-100 покрывает поверхность всего липопротеина.

ЛПОНП из печени секретируются в кровь, где на них, как и на ХМ, действует ЛП-липаза. Жирные кислоты поступают в ткани, в частности в адипоциты, и используются для синтеза жиров. В процессе удаления жиров из ЛПОНП под действием ЛП-липазы ЛПОНП сначала превращаются в ЛППП, а затем в ЛПНП. В ЛПНП основными липидными компонентами служат холестерол и его эфиры, поэтому ЛПНП являются липопротеинами, доставляющими холестерол в периферические ткани. Глицерол, освободившийся из липопротеинов, кровью транспортируется в печень, где опять может использоваться для синтеза жиров.


 

А также другие работы, которые могут Вас заинтересовать

22519. Расчет быстровращающегося диска 100.5 KB
  Расчет быстровращающегося диска Значительный интерес представляет задача о напряжениях и деформациях в быстро вращающихся валах и дисках. Высокие скорости вращения валов паровых турбин обусловливают появление в валах и дисках значительных центробежных усилий. Вызванные ими напряжения распределяются симметрично относительно оси вращения диска. Рассмотрим наиболее простую задачу о расчете диска постоянной толщины.
22520. Устойчивость сжатых стержней. Формула Эйлера 89.5 KB
  Однако разрушение стержня может произойти не только потому что будет нарушена прочность но и оттого что стержень не сохранит той формы которая ему придана конструктором; при этом изменится и характер напряженного состояния в стержне. Наиболее типичным примером является работа стержня сжатого силами Р. Разрушение линейки произойдет потому что она не сможет сохранить приданную ей форму прямолинейного сжатого стержня а искривится что вызовет появление изгибающих моментов от сжимающих сил Р и стало быть добавочные напряжения от...
22521. Анализ формулы Эйлера 80 KB
  1: 1 Таким образом чем больше точек перегиба будет иметь синусоидальноискривленная ось стержня тем большей должна быть критическая сила.1 Таким образом поставленная задача решена; для нашего стержня наименьшая критическая сила определяется формулой а изогнутая ось представляет синусоиду Величина постоянной интегрирования а осталась неопределенной; физическое значение ее выяснится если в уравнении синусоиды положить ; тогда т. посредине длины стержня получит значение: Значит а это прогиб стержня в сечении посредине его...
22522. Пределы применимости формулы Эйлера 141 KB
  Для стали 3 предел пропорциональности может быть принят равным поэтому для стержней из этого материала можно пользоваться формулой Эйлера лишь при гибкости т. Теоретическое решение полученное Эйлером оказалось применимым на практике лишь для очень ограниченной категории стержней а именно тонких и длинных с большой гибкостью. Попытки использовать формулу Эйлера для вычисления критических напряжений и проверки устойчивости при малых гибкостях вели иногда к весьма серьезным катастрофам да и опыты над сжатием стержней показывают что...
22523. Прочность при циклически изменяющихся напряжениях 149.5 KB
  Так например ось вагона вращающаяся вместе с колесами рис. Рис. Для оси вагона на рис. В точке А поперечного сечения рис.
22524. Диаграмма усталостной прочности 60.5 KB
  Диаграмма усталостной прочности. Эта кривая носит название диаграммы усталостной прочности рис. Точки А к С диаграммы соответствуют пределам прочности. Полученная диаграмма дает возможность судить о прочности конструкции работающей при циклически изменяющихся напряжениях.
22525. Расчет коэффициентов запаса усталостной прочности 147.5 KB
  Одним из основных факторов которые необходимо учитывать при практических расчетах на усталостную прочность является фактор местных напряжений. Очаги концентрации местных напряжений: Многочисленные теоретические и экспериментальные исследования показывают что в области резких изменений в форме упругого тела входящие углы отверстия выточки а также в зоне контакта деталей возникают повышенные напряжения с ограниченной зоной распространения так называемые местные напряжения. 1 а закон равномерного распределения напряжений вблизи...
22526. Основы вибропрочности конструкций 155.5 KB
  Если период вынужденных колебаний совпадет с периодом свободных колебаний стержня то мы получим явление резонанса при котором амплитуда размах колебаний будет резко расти с течением времени. Так как период раскачивающих возмущающих сил обычно является заданным то в распоряжении проектировщика остается лишь период собственных свободных колебаний конструкции который надо подобрать так чтобы он в должной мере отличался от периода изменений возмущающей силы. Вопросы связанные с определением периода частоты и амплитуды свободных и...
22527. Расчет динамического коэффициента при ударной нагрузке 140.5 KB
  Скорость ударяющего тела за очень короткий промежуток времени изменяется и в частном случае падает до нуля; тело останавливается. передается реакция равная произведению массы ударяющего тела на это ускорение. Обозначая это ускорение через а можно написать что реакция где Q вес ударяющего тела. Эти силы и вызывают напряжения в обоих телах.