81487

Переваривание белков. Протеиназы - пепсин, трипсин, химотрипсин; проферменты протеиназ и механизмы их превращения в ферменты. Субстратная специфичность протеиназ. Экзопептидазы и эндопептидазы

Доклад

Биология и генетика

Подавляющее их количество входит в состав белков которые гидролизуются в ЖКТ под действием ферментов протеаз пептидщцролаз. Под действием всех протеаз ЖКТ белки пищи распадаются на отдельные аминокислоты которые затем поступают в клетки тканей. Источником Н является Н2СО3 которая образуется в обкладочных клетках желудка из СО2 диффундирующего из крови и Н2О под действием фермента карбоангидразы карбонатдегидратазы: Н2О СО2 → Н2СО3 → НСО3 H Диссоциация Н2СО3 приводит к образованию бикарбоната который с участием специальных...

Русский

2015-02-20

110.2 KB

3 чел.

Переваривание белков. Протеиназы - пепсин, трипсин, химотрипсин; проферменты протеиназ и механизмы их превращения в ферменты. Субстратная специфичность протеиназ. Экзопептидазы и эндопептидазы.

В пищевых продуктах содержание свободных аминокислот очень мало. Подавляющее их количество входит в состав белков, которые гидролизуются в ЖКТ под действием ферментов протеаз (пептидщцролаз). Субстратная специфичность этих ферментов заключается в том, что каждый из них с наибольшей скоростью расщепляет пептидные связи, образованные определёнными аминокислотами. Протеазы, гидролизующие пептидные связи внутри белковой молекулы, относят к группе эндопептидаз. Ферменты, относящиеся к группе экзопептидаз, гидролизуют пептидную связь, образованную концевыми аминокислотами. Под действием всех протеаз ЖКТ белки пищи распадаются на отдельные аминокислоты, которые затем поступают в клетки тканей.

Переваривание белков в желудке

Желудочный сок - продукт нескольких типов клеток. Обкладочные (париетальные) клетки стенок желудка образуют соляную кислоту, главные клетки секретируют пепсиноген. Добавочные и другие клетки эпителия желудка выделяют муцинсодержащую слизь. Париетальные клетки секретируют в полость желудка также гликопротеин, который называют "внутренним фактором" (фактором Касла). Этот белок связывает "внешний фактор" - витамин В12, предотвращает его разрушение и способствует всасыванию.

Образование и роль соляной кислоты. Основная пищеварительная функция желудка заключается в том, что в нём начинается переваривание белка. Существенную роль в этом процессе играет соляная кислота. Белки, поступающие в желудок, стимулируют выделение гистамина и группы белковых гормонов -гастринов которые, в свою очередь, вызывают секрецию НСI и профермента - пепсиногена. Источником Н+ является Н2СО3, которая образуется в обкладочных клетках желудка из СО2, диффундирующего из крови, и Н2О под действием фермента карбоангидразы (карбонатдегидра-тазы):

Н2О + СО2 → Н2СО3 → НСО3- + H+

Диссоциация Н2СО3 приводит к образованию бикарбоната, который с участием специальных белков выделяется в плазму в обмен на С1-, и ионов Н+, которые поступают в просвет желудка путём активного транспорта, катализируемого мембранной Н+/К+-АТФ-азой. При этом концентрация протонов в просвете желудка увеличивается в 106 раз. Ионы Сl- поступают в просвет желудка через хлоридный канал. Концентрация НСl в желудочном соке может достигать 0,16 М, за счёт чего значение рН снижается до 1,0-2,0. Приём белковой пищи часто сопровождается выделением щелочной мочи за счёт секреции большого количества бикарбоната в процессе образования НСl. Под действием НСl происходит денатурация белков пищи, не подвергшихся термической обработке, что увеличивает доступность пептидных связей для протеаз. НСl обладает бактерицидным действием и препятствует попаданию патогенных бактерий в кишечник. Кроме того, соляная кислота активирует пепсиноген и создаёт оптимум рН для действия пепсина.

Механизм активации пепсина. Под действием гастринов в главных клетках желудочных желёз стимулируются синтез и секреция пепсиногена - неактивной формы пепсина. Пепсиноген - белок, состоящий из одной полипептидной цепи с молекулярной массой 40 кД. Под действием НСl он превращается в активный пепсин (молекулярная масса 32,7 кД) с оптимумом рН 1,0-2,5. В процессе активации в результате частичного протеолиза от N-конца молекулы пепсиногена отщепляются 42 аминокислотных остатка, которые содержат почти все положительно заряженные аминокислоты, имеющиеся в пепсиногене. Таким образом, в активном пепсине преобладающими оказываются отрицательно заряженные аминокислоты, которые участвуют в конформационных перестройках молекулы и формировании активного центра. Образовавшиеся под действием НСl активные молекулы пепсина быстро активируют остальные молекулы пепсиногена (аутокатализ). Пепсин в первую очередь гидролизует пептидные связи в белках, образованные ароматическими аминокислотами (фенилаланин, триптофан, тирозин) и несколько медленнее - образованные лейцином и дикарбоновыми аминокислотами. Пепсин - эндопептидаза, поэтому в результате его действия в желудке образуются более короткие пептиды, но не свободные аминокислоты.

Переваривание белков в кишечнике.

Желудочное содержимое (химус) в процессе переваривания поступает в двенадцатиперстную кишку. Низкое значение рН химуса вызывает в кишечнике выделение белкового гормона секретина, поступающего в кровь. Этот гормон в свою очередь стимулирует выделение из поджелудочной железы в тонкий кишечник панкреатического сока, содержащего НСО3-, что приводит к нейтрализации НСl желудочного сока и ингибированию пепсина. В результате рН резко возрастает от 1,5-2,0 до ∼7,0. Поступление пептидов в тонкий кишечник вызывает секрецию другого белкового гормона - холецистокинина, который стимулирует выделение панкреатических ферментов с оптимумом рН 7,5-8,0. Под действием ферментов поджелудочной железы и клеток кишечника завершается переваривание белков.

Активация панкреатических ферментов В поджелудочной железе синтезируются проферменты ряда протеаз: трипсиноген, химотрипсиноген, проэластаза, прокарбоксипептидазы А и В. В кишечнике они путём частичного протеолиза превращаются в активные ферменты трипсин, химотрипсин, эластазу и карбоксипептидазы А и В.

Активация трипсиногена происходит под действием фермента эпителия кишечника энтеропептидазы. Этот фермент отщепляет с N-конца молекулы трипсиногена гексапептид Вал-(Асп)4-Лиз. Изменение конформации оставшейся части полипептидной цепи приводит к формированию активного центра, и образуется активный трипсин. Последовательность Вал-(Асп)4-Лиз присуща большинству известных трипсиноге-нов разных организмов - от рыб до человека.

Образовавшийся трипсин активирует химотрипсиноген, из которого получается несколько активных ферментов (рис. 9-3). Химотрипсиноген состоит из одной полипептидной цепи, содержащей 245 аминокислотных остатков и пяти дисульфидных мостиков. Под действием трипсина расщепляется пептидная связь между 15-й и 16-й аминокислотами, в результате чего образуется активный π-химотрипсин. Затем под действием π-химотрипсина отщепляется дипептид сер(14)-арг(15), что приводит к образованию δ-химотрипсина. Отщепление дипептида тре(147)-арг(148) завершает образование стабильной формы активного фермента - α-химотрипсина, который состоит из трёх полипептидных цепей, соединённых дисульфидными мостиками. Остальные проферменты панкреатических протеаз (проэластаза и прокарбоксипептидазы А и В) также активируются трипсином путём частичного протеолиза. В результате образуются активные ферменты - эластаза и карбокси-пептидазы А и В.

Специфичность действия протеаз. Трипсин преимущественно гидролизует пептидные связи, образованные карбоксильными группами аргинина и лизина. Химотрипсины наиболее активны в отношении пептидных связей, образованных карбоксильными группами ароматических аминокислот (Фен, Тир, Три). Карбоксипептидазы А и В - цинксодержащие ферменты, отщепляют С-концевые остатки аминокислот. Причём карбоксипептидаза А отщепляет преимущественно аминокислоты, содержащие ароматические или гидрофобные радикалы, а карбоксипептидаза В - остатки аргинина и лизина. Последний этап переваривания - гидролиз небольших пептидов, происходит под действием ферментов аминопептидаз и дипептидаз, которые синтезируются клетками тонкого кишечника в активной форме.

  1.  Аминопептидазы последовательно отщепляют N-концевые аминокислоты пептидной цепи. Наиболее известна лейцинаминопептидаза - Zn2+- или Мn2+-содержащий фермент, несмотря на название, обладающий широкой специфичностью по отношению к N-концевым аминокислотам.
  2.  Дипептидазы расщепляют дипептиды на аминокислоты, но не действуют на трипептиды.

В результате последовательного действия всех пищеварительных протеаз большинство пищевых белков расщепляется до свободных аминокислот.

Экзопептидазы (экзопротеиназы) — ферменты, гидролизующие белки, отщепляя аминокислоты от конца пептида: карбоксипептидазы — от C-конца, аминопептидазы — от N-конца, дипептидазы расщепляют дипептиды. Экзопептидазы синтезируются в клетках тонкого кишечника (аминопептидазы, дипептидазы) и в поджелудочной железе (карбоксипептидаза). Функционируют эти ферменты внутриклеточно в кишечном эпителии и, в небольшом количестве, в просвете кишечника.

Эндопептидазы (эндопротеиназы) — протеолитические ферменты (пепсин, трипсин, химотрипсин), расщепляющие пептидные связи внутри пептидной цепи. С наибольшей скоростью ими гидролизуются связи, образованные определёнными аминокислотами. Эндопептидазы синтезируются в виде проферментов, активируемых затем при помощи избирательного протеолиза. Таким образом клетки, секретирующие эти ферменты защищают собственные белки от разрушения. От действия ферментов клеточную мембрану клеток животных защищает также поверхностный слой олигосахаридовгликокаликс, а в кишечнике и желудке — слой слизи.


 

А также другие работы, которые могут Вас заинтересовать

13350. Визначення опору провідника за допомогою моста сталого струму (моста Уітстона) 581.5 KB
  Лабораторна робота № 3 Тема: Визначення опору провідника за допомогою моста сталого струму моста Уітстона. Мета: ознайомитись з класичним методом вимірювання опору за допомогою мостової схеми. Прилади і пристрої: стрілковий гальванометр з нульовою точкою мага
13351. Изучение особенностей идентификации и рассмотрение фальсификации растительных масел 906 KB
  В связи с актуальностью проблемы идентификации и фальсификации товаров необходимо изучить данную тему глубже. А в качестве объекта исследования хотелось бы обратиться к такой группе товаров как растительные масла. Ведь рынок масложировой продукции
13352. Основні способи обробки металів тиском 171.5 KB
  Лабораторна робота Обробка металів тиском Мета роботи: ознайомитися з основними способами обробки металів тиском. Теоретичні відомості Обробка тиском заснована на пластичних властивостях металів тобто на їх здатності під дією навантаження остаточно...
13353. Ручне електродугове зварювання металів. Електрична дуга та її властивості 160 KB
  Ручне електродугове зварювання металів Мета роботи: ознайомитися з основними відомостями про ручне електродугове зварювання металів плавким електродом вибрат: режим зварювання отримати зварне зєднання та перевірит його якість. Обладнання і
13354. Газове зварювання металів 1.45 MB
  Лабораторна робота № 4 Газове зварювання металів Мета роботи: ознайомитися з основними відомостями про газове зварювання металів вибрати режими зварювання отримати зварне з'єднання та перевірити його якість. Обладнання інструменти і матеріали: спецодяг зварюваль...
13355. Токарні верстати ,загальний вигляд, основні вузли та блоки 1.03 MB
  1.Токарні верстати загальний вигляд основні вузли та блоки. Верстати токарної групи застосовують для обробки заготовок які обертаються головний рух різання інструментом що здійснює неперервний рух подачі. Тут основним різальним інструментом є різець; використ
13356. Загальний вигляд свердлильних та розточувальних верстатів, основні вузли та блоки 366.5 KB
  1.Загальний вигляд свердлильних та розточувальних верстатів основні вузли та блоки. Свердлильні верстати Свердлильні верстати служать для обробки отворів інструментом який виконує одночасно головний обертальний рух різання і поступальний рух подачі. Розрізн...
13357. Фрезерні верстати 617.5 KB
  Фрезерування високопродуктивний і поширений спосіб обробки поверхонь заготовки за допомогою різального інструмента фрези з багатьма вістрями. Під час обробки фреза обертається виконуючи головний рух різання а заготовка пересувається прямолінійно виконуючи ру
13358. Визначення чисел твердості металів на приладі ТК-2 (типу Роквелла) 2.6 MB
  Лабораторна робота №8 Визначення чисел твердості металів на приладі ТК2 типу Роквелла Мета роботи: Ознайомитися з основними методами вимірювання твердості металів та сплавів ознайомитися з будовою і принципом роботи приладу ТК2 для випробування металів на тве