81487

Переваривание белков. Протеиназы - пепсин, трипсин, химотрипсин; проферменты протеиназ и механизмы их превращения в ферменты. Субстратная специфичность протеиназ. Экзопептидазы и эндопептидазы

Доклад

Биология и генетика

Подавляющее их количество входит в состав белков которые гидролизуются в ЖКТ под действием ферментов протеаз пептидщцролаз. Под действием всех протеаз ЖКТ белки пищи распадаются на отдельные аминокислоты которые затем поступают в клетки тканей. Источником Н является Н2СО3 которая образуется в обкладочных клетках желудка из СО2 диффундирующего из крови и Н2О под действием фермента карбоангидразы карбонатдегидратазы: Н2О СО2 → Н2СО3 → НСО3 H Диссоциация Н2СО3 приводит к образованию бикарбоната который с участием специальных...

Русский

2015-02-20

110.2 KB

3 чел.

Переваривание белков. Протеиназы - пепсин, трипсин, химотрипсин; проферменты протеиназ и механизмы их превращения в ферменты. Субстратная специфичность протеиназ. Экзопептидазы и эндопептидазы.

В пищевых продуктах содержание свободных аминокислот очень мало. Подавляющее их количество входит в состав белков, которые гидролизуются в ЖКТ под действием ферментов протеаз (пептидщцролаз). Субстратная специфичность этих ферментов заключается в том, что каждый из них с наибольшей скоростью расщепляет пептидные связи, образованные определёнными аминокислотами. Протеазы, гидролизующие пептидные связи внутри белковой молекулы, относят к группе эндопептидаз. Ферменты, относящиеся к группе экзопептидаз, гидролизуют пептидную связь, образованную концевыми аминокислотами. Под действием всех протеаз ЖКТ белки пищи распадаются на отдельные аминокислоты, которые затем поступают в клетки тканей.

Переваривание белков в желудке

Желудочный сок - продукт нескольких типов клеток. Обкладочные (париетальные) клетки стенок желудка образуют соляную кислоту, главные клетки секретируют пепсиноген. Добавочные и другие клетки эпителия желудка выделяют муцинсодержащую слизь. Париетальные клетки секретируют в полость желудка также гликопротеин, который называют "внутренним фактором" (фактором Касла). Этот белок связывает "внешний фактор" - витамин В12, предотвращает его разрушение и способствует всасыванию.

Образование и роль соляной кислоты. Основная пищеварительная функция желудка заключается в том, что в нём начинается переваривание белка. Существенную роль в этом процессе играет соляная кислота. Белки, поступающие в желудок, стимулируют выделение гистамина и группы белковых гормонов -гастринов которые, в свою очередь, вызывают секрецию НСI и профермента - пепсиногена. Источником Н+ является Н2СО3, которая образуется в обкладочных клетках желудка из СО2, диффундирующего из крови, и Н2О под действием фермента карбоангидразы (карбонатдегидра-тазы):

Н2О + СО2 → Н2СО3 → НСО3- + H+

Диссоциация Н2СО3 приводит к образованию бикарбоната, который с участием специальных белков выделяется в плазму в обмен на С1-, и ионов Н+, которые поступают в просвет желудка путём активного транспорта, катализируемого мембранной Н+/К+-АТФ-азой. При этом концентрация протонов в просвете желудка увеличивается в 106 раз. Ионы Сl- поступают в просвет желудка через хлоридный канал. Концентрация НСl в желудочном соке может достигать 0,16 М, за счёт чего значение рН снижается до 1,0-2,0. Приём белковой пищи часто сопровождается выделением щелочной мочи за счёт секреции большого количества бикарбоната в процессе образования НСl. Под действием НСl происходит денатурация белков пищи, не подвергшихся термической обработке, что увеличивает доступность пептидных связей для протеаз. НСl обладает бактерицидным действием и препятствует попаданию патогенных бактерий в кишечник. Кроме того, соляная кислота активирует пепсиноген и создаёт оптимум рН для действия пепсина.

Механизм активации пепсина. Под действием гастринов в главных клетках желудочных желёз стимулируются синтез и секреция пепсиногена - неактивной формы пепсина. Пепсиноген - белок, состоящий из одной полипептидной цепи с молекулярной массой 40 кД. Под действием НСl он превращается в активный пепсин (молекулярная масса 32,7 кД) с оптимумом рН 1,0-2,5. В процессе активации в результате частичного протеолиза от N-конца молекулы пепсиногена отщепляются 42 аминокислотных остатка, которые содержат почти все положительно заряженные аминокислоты, имеющиеся в пепсиногене. Таким образом, в активном пепсине преобладающими оказываются отрицательно заряженные аминокислоты, которые участвуют в конформационных перестройках молекулы и формировании активного центра. Образовавшиеся под действием НСl активные молекулы пепсина быстро активируют остальные молекулы пепсиногена (аутокатализ). Пепсин в первую очередь гидролизует пептидные связи в белках, образованные ароматическими аминокислотами (фенилаланин, триптофан, тирозин) и несколько медленнее - образованные лейцином и дикарбоновыми аминокислотами. Пепсин - эндопептидаза, поэтому в результате его действия в желудке образуются более короткие пептиды, но не свободные аминокислоты.

Переваривание белков в кишечнике.

Желудочное содержимое (химус) в процессе переваривания поступает в двенадцатиперстную кишку. Низкое значение рН химуса вызывает в кишечнике выделение белкового гормона секретина, поступающего в кровь. Этот гормон в свою очередь стимулирует выделение из поджелудочной железы в тонкий кишечник панкреатического сока, содержащего НСО3-, что приводит к нейтрализации НСl желудочного сока и ингибированию пепсина. В результате рН резко возрастает от 1,5-2,0 до ∼7,0. Поступление пептидов в тонкий кишечник вызывает секрецию другого белкового гормона - холецистокинина, который стимулирует выделение панкреатических ферментов с оптимумом рН 7,5-8,0. Под действием ферментов поджелудочной железы и клеток кишечника завершается переваривание белков.

Активация панкреатических ферментов В поджелудочной железе синтезируются проферменты ряда протеаз: трипсиноген, химотрипсиноген, проэластаза, прокарбоксипептидазы А и В. В кишечнике они путём частичного протеолиза превращаются в активные ферменты трипсин, химотрипсин, эластазу и карбоксипептидазы А и В.

Активация трипсиногена происходит под действием фермента эпителия кишечника энтеропептидазы. Этот фермент отщепляет с N-конца молекулы трипсиногена гексапептид Вал-(Асп)4-Лиз. Изменение конформации оставшейся части полипептидной цепи приводит к формированию активного центра, и образуется активный трипсин. Последовательность Вал-(Асп)4-Лиз присуща большинству известных трипсиноге-нов разных организмов - от рыб до человека.

Образовавшийся трипсин активирует химотрипсиноген, из которого получается несколько активных ферментов (рис. 9-3). Химотрипсиноген состоит из одной полипептидной цепи, содержащей 245 аминокислотных остатков и пяти дисульфидных мостиков. Под действием трипсина расщепляется пептидная связь между 15-й и 16-й аминокислотами, в результате чего образуется активный π-химотрипсин. Затем под действием π-химотрипсина отщепляется дипептид сер(14)-арг(15), что приводит к образованию δ-химотрипсина. Отщепление дипептида тре(147)-арг(148) завершает образование стабильной формы активного фермента - α-химотрипсина, который состоит из трёх полипептидных цепей, соединённых дисульфидными мостиками. Остальные проферменты панкреатических протеаз (проэластаза и прокарбоксипептидазы А и В) также активируются трипсином путём частичного протеолиза. В результате образуются активные ферменты - эластаза и карбокси-пептидазы А и В.

Специфичность действия протеаз. Трипсин преимущественно гидролизует пептидные связи, образованные карбоксильными группами аргинина и лизина. Химотрипсины наиболее активны в отношении пептидных связей, образованных карбоксильными группами ароматических аминокислот (Фен, Тир, Три). Карбоксипептидазы А и В - цинксодержащие ферменты, отщепляют С-концевые остатки аминокислот. Причём карбоксипептидаза А отщепляет преимущественно аминокислоты, содержащие ароматические или гидрофобные радикалы, а карбоксипептидаза В - остатки аргинина и лизина. Последний этап переваривания - гидролиз небольших пептидов, происходит под действием ферментов аминопептидаз и дипептидаз, которые синтезируются клетками тонкого кишечника в активной форме.

  1.  Аминопептидазы последовательно отщепляют N-концевые аминокислоты пептидной цепи. Наиболее известна лейцинаминопептидаза - Zn2+- или Мn2+-содержащий фермент, несмотря на название, обладающий широкой специфичностью по отношению к N-концевым аминокислотам.
  2.  Дипептидазы расщепляют дипептиды на аминокислоты, но не действуют на трипептиды.

В результате последовательного действия всех пищеварительных протеаз большинство пищевых белков расщепляется до свободных аминокислот.

Экзопептидазы (экзопротеиназы) — ферменты, гидролизующие белки, отщепляя аминокислоты от конца пептида: карбоксипептидазы — от C-конца, аминопептидазы — от N-конца, дипептидазы расщепляют дипептиды. Экзопептидазы синтезируются в клетках тонкого кишечника (аминопептидазы, дипептидазы) и в поджелудочной железе (карбоксипептидаза). Функционируют эти ферменты внутриклеточно в кишечном эпителии и, в небольшом количестве, в просвете кишечника.

Эндопептидазы (эндопротеиназы) — протеолитические ферменты (пепсин, трипсин, химотрипсин), расщепляющие пептидные связи внутри пептидной цепи. С наибольшей скоростью ими гидролизуются связи, образованные определёнными аминокислотами. Эндопептидазы синтезируются в виде проферментов, активируемых затем при помощи избирательного протеолиза. Таким образом клетки, секретирующие эти ферменты защищают собственные белки от разрушения. От действия ферментов клеточную мембрану клеток животных защищает также поверхностный слой олигосахаридовгликокаликс, а в кишечнике и желудке — слой слизи.


 

А также другие работы, которые могут Вас заинтересовать

26680. Сцепление генов. Группы сцепления. Генетический анализ сцепления генов. Сцепление и перекрест в экспериментах Моргана с дрозофилой 12.78 KB
  Генетический анализ сцепления генов. Число хромосом у разных видов невелико по сравнению с числом генов. У дрозофилы более тысячи генов на 4 пары хромосом.
26681. Транскрипция – синтез РНК 14.63 KB
  Транскрипция синтез всех типов РНК 1 этап экспрессии генов. РНКполимеразы: Транскрипцию осуществлт фермент РНКполимераза особть фия: не требует праймера начинает работать с 1 нуклда работает в направлении 5→3 У прокариот РНКполимза E δ70 имеет большое колво субц 2α взаимодт с промотором; 2β актив. РНКполимза сочетт в себе полимеразную и хеликазю активть.
26682. Трансляция 16.84 KB
  Трансляция - реализация ген.программы клеток,происходит перевод ген.информации,закодированной в структуре НК,в аминокислотную последовательность белков. Это перевод четырехбуквенного(по числу постоянно встречающихся в ДНК и РНК нуклеотидов)
26683. Понятие гена и генома. Генетический код. Регуляция активности генов на примере лактозного оперона 14.35 KB
  Регуляция активности генов на примере лактозного оперона. 2Является универсальным 3Вырожденность 1АК может кодироваться несколькими триплетами 4Неперекрывающийся то есть триплет кодирует только 1АК 5Стопкодоны 3 последовательности: УАА УАГ УГА Регуляция действия генов на примере лактозного оперона. Лактоза расщепляется на глюкозу и галактозу под действием фермента βгалактозидаза P lacI P O lacZ lacY lacC Строение лакоперона:1 P промотер который связывается с мРНК. Ген lacI не входит в состав оперона.
26684. Генетическая информация о структуре белков и нуклеиновых кислот у всех организмов заключена в молекулах ДНК или РНК в виде генов 17.31 KB
  Генетическая информация о структуре белков и нуклеиновых кислот у всех организмов заключена в молекулах ДНК или РНК в виде генов. РП ДНК проходит в соответствии с правилами УотсонКрика. Во время РП каждая из цепей родительской ДНК служит матрицей для дочерней комплементарной цепи полуконсервативный механизм. Главный фермент РП ДНКзависимая ДНКполимераза.
26685. Генетика пола. Половые хромосомы. Типы хромосомного определения пола. Наследование, сцепленное с полом. Генетический анализ при этом типе наследования 14.29 KB
  У кузнечиков тип XO самки гомогаметны а самцы гетерогаметны; у моли тип XO наоборот самки гетерогаметны а самцы гомогаметны. Были проведены 2 типа скрещиваний дрозофил: в одном самки были нормальными по цвету глаз w а самцы белоглазые w в другом белоглазых самок w скрещивали с нормальными самцами w. В первом типе скрещивания все самки и самцы первого поколения были красноглазыми нормальными. Во втором поколении все самки были красноглазыми а самцы как красноглазыми так и белоглазыми в соотнош.
26686. Генетика популяций самоопылителей 16.7 KB
  2 в F2 начинается индивидуальный отбор. изучаются для отбора. Массовый отбор малоэффективен полученные сорта неустойчивы. Семейный отбор отбор потомнков 1 семьи.
26687. Закон гомологических рядов наследственной изменчивости Н.И. Вавилова 12.26 KB
  Закон Вавилова говорит что генетически близкие виды и роды характеризся сходными рядами наследств. Этот закон можно выразить формулой: Закон Вавилова имеет большое теоретич. Этот закон в селекционной практике важен потому что прогнозирует возможность обнаружить неизвестные формы растений у данного вида если они уже известны у других видов.
26688. Мейоз 18.64 KB
  Также происходит рекомбинация генго материала обмен участками м у гомологичными хромосомами кроссинговер активация транскрипции в профазе первого деления и отсутствие Sфазы м у 1ми 2м делением. Профазу первого I мейотического деления подразделяют на 5 стадий: лептотена стадия тонких нитей зиготена стадия сливающихся нитей пахитена стадия толстых нитей диплотена стадия двойных нитей диакинез стадия обособления двойных нитей. Затем следует метафаза I деления и последующие фазы деления клеток наступает следующий П цикл в...