81501

Обмен фенилаланина и тирозина. Фенилкетонурия; биохимический дефект, проявление болезни, методы предупреждения, диагностика и лечение

Доклад

Биология и генетика

Тирозин условно заменимая аминокислота поскольку образуется из фенилаланина. Метаболизм феиилаланина Основное количество фенилаланина расходуется по 2 путям: включается в белки; превращается в тирозин. Превращение фенилаланина в тирозин прежде всего необходимо для удаления избытка фенилаланина так как высокие концентрации его токсичны для клеток.

Русский

2015-02-20

261.77 KB

6 чел.

Обмен фенилаланина и тирозина. Фенилкетонурия; биохимический дефект, проявление болезни, методы предупреждения, диагностика и лечение.

Фенилаланин - незаменимая аминокислота, так как в клетках животных не синтезируется её бензольное кольцо. Тирозин - условно заменимая аминокислота, поскольку образуется из фенилаланина. Содержание этих аминокислот в пищевых белках (в том числе и растительных) достаточно велико. Фенилаланин и тирозин используются для синтеза многих биологически ктивных соединений. В разных тканях метаболизм этих аминокислот происходит по-разному.

 Метаболизм феиилаланина

Основное количество фенилаланина расходуется по 2 путям:

  1.  включается в белки;
  2.  превращается в тирозин.

Превращение фенилаланина в тирозин прежде всего необходимо для удаления избытка фенилаланина, так как высокие концентрации его токсичны для клеток. Образование тирозина не имеет большого значения, так как недостатка этой аминокислоты в клетках практически не бывает. Основной путь метаболизма фенилаланина начинается с его гидроксилирования, в результате чего образуется тирозин. Эта реакция катализируется специфической монооксиге-назой - фенилаланингидр(жсилазой, кофермен-том которой служит тетрагидробиоптерин (Н4БП). Активность фермента зависит также от наличия Fe2+. Реакция необратима. Н4БП в результате реакции окисляется в дигидробиоптерин (Н2БП). Регенерация последнего происходит при участии дигидроптеридинредуктазы с использованием NADPH + H+. Обмен тирозина значительно сложнее, чем обмен фенилаланина. Кроме использования в синтезе белков, тирозин в разных тканях выступает предшественником таких соединений, как катехоламины, тироксин, меланины, и ка-таболизируется до СО2 и Н2О.

Катаболизм тирозина в печени

  1.  В печени происходит катаболизм тирозина до конечных продуктов. Специфический путь катаболизма включает несколько ферментативных реакций, завершающихся образованием фумарата и ацетоацетата Трансаминирование тирозина с ос-кетоглутаратом катализирует тирозинаминотрансфе-раза(кофермент ПФ) - индуцируемый фермент печени млекопитающих. В результате образуется п-гидроксифенилпируват.
  2.  В реакции окисления п-гидроксифенилпирувата в гомогентизиновую кислоту происходит декарбоксилирование, гидроксилирование ароматического кольца и миграция боковой цепи. Реакцию катализирует фермент n-гидроксифенилпируватдиоксигеназа, кофакторами которого выступают витамин С и Fe2+.
  3.  Превращение гомогентизиновой кислоты в фумарилацетоацетат сопровождается расщеплением ароматического кольца. Эта реакция катализируется диоксигеназой гомогентизиновой кислоты, в качестве кофермента содержащей Fe2+.

Обмен фенилаланина и тирозина связан со значительным количеством реакций гидроксилирования, которые катализируют оксигеназы. Ферменты оксигеназы (гидроксилазы) используют молекулу О2 и кофермент-донор водорода (чаще - Н4БП). Для катализа оксигеназам необходимы кофакторы - Fe2+ или гем (для некоторых - Сu+), а для многих ещё и витамин С. Оксигеназы делят на 2 группы:

  1.  Монооксигеназы - один атом О2 присоединяют к продукту реакции, другой используют для образования Н2О;
  2.  Диоксигеназы - оба атома О2 используют для образования продукта реакции.

Почти все процессы расщепления ароматических колец в биологических системах катализируются диоксигеназами, подклассом ферментов, открытым японским биохимиком Осами Хайяши. В результате разрыва бензольного кольца образуется малеилацетоацетат, который в процессе цис- и транс-изомеризации превращается в фумарилацетоацетат.

  1.  Гидролиз фумарилацетоацетата при действии фумарилацетоацетатгидролазы приводит к образованию фумарата и ацетоацетата. Фумарат может окисляться до СО2 и Н2О или использоваться для глюконеогенеза. Ацетоацетат - кетоновое тело, окисляемое до конечных продуктов с выделением энергии.

Превращение тирозина в меланоцитах. В пигментных клетках (меланоцитах) тирозин выступает предшественником тёмных пигментов - меланинов. Среди них преобладают 2 типа: эумеланины и феомеланины. Эумеланины (чёрного и коричневого цвета) - нерастворимые высокомолекулярные гетерополимеры 5,6-дигидроксииндола и некоторых его предшественников. Феомеланины - жёлтые или красновато-коричневые полимеры, растворимые в разбавленных щелочах. Находятся они, в основном, в составе волос. Меланины присутствуют в сетчатке глаз. Цвет кожи зависит от распределения меланоцитов и количества в них разных типов меланинов.

Превращение тирозина в щитовидной железе В щитовидной железе синтезируются и выделяются гормоны йодтиронины: тироксин (тетрайодтиронин) и трийодтиронин. Эти гормоны представляют собой йодированные остатки тирозина, которые попадают в клетки щитовидной железы через базальную мембрану

 Превращения тирозина в надпочечниках и нервной ткани (синтез катехоламинов)В мозговом веществе надпочечников и нервной ткани тирозин является предшественником катехоламинов (дофамина, норадреналина и адреналина) При образовании катехоламинов, которое происходит в нервной ткани и надпочечниках, и меланина в меланоцитах промежуточным продуктом служит диоксифенилаланин (ДОФА) . Однако гидроксилирование тирозина в клетках различных типов катализируется различными ферментами:

  1.  Тирозиназа в меланоцитах является Сu+-зависимым ферментом (см. выше).
  2.  Тирозингидроксилаза в надпочечниках и катехоламинергических нейронах не нуждается в ионах меди. Это - Fе2+-зависимый фермент, аналогично фенилаланингидроксилазе в качестве кофермента использующий Н4БП.
  3.  Физиологическая роль тирозингидроксилазы чрезвычайно велика, так как этот фермент является регуляторным и определяет скорость синтеза катехоламинов.
  4.  Активность тирозингидроксилазы значительно изменяется в результате:
  5.  Аллостерической регуляции (ингибитор - норадреналин);
  6.  Фосфорилирования/дефосфорилирования: в результате фосфорилирования с участием протеинкиназы А снижаются Кm для кофермента Н4БП и сродство фермента к норадреналину, в результате чего происходит активация тирозингидроксилазы.
  7.  Количество фермента регулируется на уровне транскрипции.
  8.  ДОФА-декарбоксилаза (кофермент - ПФ) катализирует образование дофамина, который при участии дофамингидроксилазы (монооксигеназы) превращается в норадреналин. Для функционирования фермента необходимы ионы Сu+, витамин С и тетрагидробиоптерин.
  9.  В мозговом веществе надпочечников фенилэтаноламин-N-метилтрансфераза катализирует метилирование норадреналина, в результате чего образуется адреналин. Источником метальной группы служит SАМ.

Дофамин и норадреналин служат медиаторами в синаптической передаче нервных импульсов, а адреналин - гормон широкого спектра действия, регулирующий энергетический обмен. Одна из функций катехоламинов - регуляция деятельности ССС

 Фенилкетонурия В печени здоровых людей небольшая часть фенилаланина (∼10%) превращается в фенил-лактат и фенилацетилглутамин. Этот путь катаболизма фенилаланина становится главным при нарушении основного пути - превращения в тирозин, катализируемого фенил-аланингидроксилазой. Такое нарушение сопровождается гиперфенилаланинемией и повышением в крови и моче содержания метаболитов альтернативного пути: фенилпирувата, фенилацетата, фениллактата и фенилацетилглу-тамина.

Дефект фенилаланингидроксилазы приводит к заболеванию фенилкетонурия (ФКУ). Выделяют 2 формы ФКУ:

  1.  Классическая ФКУ - наследственное заболевание, связанное с мутациями в гене фенилаланингидроксилазы, которые приводят к снижению активности фермента или полной его инактивации. При этом концентрация фенилаланина повышается в крови в 20-30 раз (в норме - 1,0-2,0 мг/дл), в моче - в 100-300 раз по сравнению с нормой (30 мг/дл). Концентрация фенилпирувата и фениллактата в моче достигает 300-600 мг/дл при полном отсутствии в норме.Наиболее тяжёлые проявления ФКУ - нарушение умственного и физического развития, судорожный синдром, нарушение пигментации. При отсутствии лечения больные не доживают до 30 лет. Частота заболевания - 1:10 000 новорождённых. Заболевание наследуется по аутосомно-рецессивному типу. Тяжёлые проявления ФКУ связаны с токсическим действием на клетки мозга высоких концентраций фенилаланина, фенилпирувата, фениллактата. Большие концентрации фенилаланина ограничивают транспорт тирозина и триптофана через гематоэнцефаличеекий барьер и тормозят синтез нейро-медиаторов (дофамина, норадреналина, серотонина).
  2.  Вариантная ФКУ (коферментзависимая гиперфенилаланинемия) - следствие мутаций в генах, контролирующих метаболизм Н4БП. Клинические проявления - близкие, но не точно совпадающие с проявлениями классической ФКУ. Частота заболевания - 1-2 случая на 1 млн новорождённых. Н4БП необходим для реакций гидроксилирования не только фенилаланина, но также тирозина и триптофана, поэтому при недостатке этого кофермента нарушается метаболизм всех 3 аминокислот, в том числе и синтез ней-ромедиаторов. Заболевание характеризуется тяжёлыми неврологическими нарушениями и ранней смертью ("злокачественная" ФКУ).

Прогрессирующее нарушение умственного и физического развития у детей, больных ФКУ, можно предотвратить диетой с очень низким содержанием или полным исключением фенилаланина. Если такое лечение начато сразу после рождения ребёнка, то повреждение мозга предотвращается. Считается, что ограничения в питании могут быть ослаблены после 10-летнего возраста (окончание процессов миелинизации мозга), однако в настоящее время многие педиатры склоняются в сторону "пожизненной диеты". Для диагностики ФКУ используют качественные и количественные методы обнаружения патологических метаболитов в моче, определение концентрации фенилаланина в крови и моче. Дефектный ген, ответственный за фенилкетонурию, можно обнаружить у фенотипически нормальных гетерозиготных носителей с помощью теста толерантности к фенилаланину. Для этого обследуемому дают натощак ∼10 г фенилаланина в виде раствора, затем через часовые интервалы берут пробы крови, в которых определяют содержание тирозина. В норме концентрация тирозина в крови после фенилаланиновой нагрузки значительно выше, чем у гетерозиготных носителей гена фежилкетонурии. Этот тест используется в генетической консультации для определения риска рождения больного ребёнка. Разработана схема скрининга для выявления новорождённых детей с ФКУ. Чувствительность теста практически достигает 100%. В настоящее время диагностику мутантного гена, ответственного за ФКУ, можно проводить с помощью методов ДНК-диагностики (рестрикционного анализа и ПЦР).


 

А также другие работы, которые могут Вас заинтересовать

78464. Рестриктивный тип дыхательной недостаточности. Клинические и функциональные признаки, характерные для ДН рестриктивного типа 70 KB
  Рестриктивный тип ДН – вариант вентиляционной (гиперкапнической) ДН, характеризующийся снижением способности легких, грудной клетки или плевры к расправлению во время вдоха.
78465. Обструктивный тип дыхательной недостаточности. Клинические и функциональные признаки, характерные для ДН обструктивного типа 85 KB
  Встречается при: Хронический бронхит; Бронхиальная астма; Эмфизема; ХОБЛ; Синдром бронхиальной обструкции; Стенозы трахеи и крупных бронхов; Бронхоэктатическая болезнь; Причины сужения просвета бронхов: бронхоспазм; аллергический отёк; воспалительный отёк; инфильтрация слизистой оболочки бронхов; закупорка бронхов мокротой; склероз бронхиальных стенок; деструкция каркаса бронхиальных стенок; Патогенез: Сужение просвета бронхов является причиной роста сопротивления потоку воздуха в бронхах что в свою очередь приводит к снижению...
78466. Дыхательная недостаточность по смешанному типу. Клинические и функциональные признаки, характерные для ДН смешанного типа 86.5 KB
  Пневмосклероз различной этиологии; Обструктивный тип ДН: Хронический бронхит; Бронхиальная астма; Эмфизема; ХОБЛ; Синдром бронхиальной обструкции; Стенозы трахеи и крупных бронхов; Бронхоэктатическая болезнь; Развивается при длительном течении сердечнолегочных заболеваний; Диагностика: признаки ДН клиника; исследование ФВД характеризуется снижением практически всех показателей...
78467. Тяжелое течение острой дыхательной недостаточности: астматический статус. Принципы диагностики и лечения 98.5 KB
  Возросшее сопротивление воздухоносных путей преодолевается за счет больших колебаний внутриплеврального давления чрезмерно низкого на вдохе и очень высокого на выдохе что приводит к резкому увеличению работы быстрому утомлению и снижению функции дыхательной мускулатуры; Клиника: I стадия относительной компенсации: выраженный приступ удушья не купирующийся ранее эффективными ЛС; мучительный приступообразный кашель без мокроты; вынужденное положение больного; диффузный цианоз; потливость; возбуждение больного; перкуторно:...
78468. Тяжелое течение острой дыхательной недостаточности: острый респираторный дистресс-синдром взрослых (ОРДСВ). Причины ОРДСВ 124 KB
  Острый респираторный дистресссиндром ОРДС – особая форма дыхательной недостаточности возникающая при острых повреждениях легких различной этиологии и характеризуется образованием в обоих легких диффузных легочных инфильтратов резким нарушением растяжимости легочной ткани развитием некардиогенного отека легких и выраженной гипоксемии резистентности к кислородотерапии.; При остром повреждении легкого происходит воспаление = Скопление активированных лейкоцитов и тромбоцитов = Протеолитические ферменты Простагландины Активные...
78469. Тяжелое течение острой дыхательной недостаточности: кардиогенный отек легких. Патогенетические и клинико-функциональные различия кардиогенного и некардиогенного отека легких 82.5 KB
  Патогенетические и клинико-функциональные различия кардиогенного и некардиогенного отека легких. Причины кардиогенного отека легких. Отек легких это острое состояние в основе которого лежит патологическое накопление внесосудистой жидкости в легочной ткани и альвеолах приводящее к снижению функциональных способностей легких.
78470. Клинико-рентгенологические признаки легочного инфильтрата. Наиболее частые причины легочного инфильтрата. Тактика ведения больных с легочным инфильтратом 102 KB
  Легочной инфильтрат - клинико-рентгенологический признак воспалительного изменения легочной паренхимы за счет экссудативно-пролиферативных процессов, сопровождающихся потерей воздушности, эластичности и уплотнением структур легочной ткани.
78471. Классификация пневмоний. Критерии для постановки диагноза «пневмония». Оценка тяжести и прогноза исхода пневмонии по шкале CURB-65 97 KB
  Критерии для постановки диагноза пневмония. Классификация пневмоний Американского торакального общества 1993 г: Внебольничная пневмония ВП; Нозокомиальная внутригоспитальная пневмония НП; Аспирационная пневмония АП; Пневмония у лиц с тяжелым дефектом иммунитета; Типичные вызываются пневмотропными микробами; Атипичные вызываются внутриклеточными облигантами такими как вирусы хламидии микоплазмы клебсиеллы легионеллы и др.; Вторичные пневмонии: Застойная гипостатическая пневмония декомпенсация ХСН; Инфарктная...
78472. Внебольничная пневмония: принципы диагностики на амбулаторном и стационарном этапах ведения. Принципы выбора эмпирической антимикробной терапии в зависимости от группы риска и вероятной этиологии пневмонии 133 KB
  Лечение ВП в амбулаторных условиях: возбудители и препараты выбора: S. influenz: Препараты выбора: Амоксициллин или макролиды внутрь; Альтернативные препараты: Респираторные фторхинолоны левофлоксацин моксифлоксацин Доксициклин внутрь; S.ureus Enterobctericee: Препараты выбора: Амоксициллин Клавуланат или цефуроксим аксетил внутрь; Альтернативные препараты: Респираторные фторхинолоны левофлоксацин моксифлоксацин внутрь; Лечение ВП в стационарных условиях: возбудители и препараты выбора: S.ureus Enterobctericee: Препараты...