81517
Повреждение и репарация ДНК. Ферменты ДНК-репарирующего комплекса
Доклад
Биология и генетика
Ферменты ДНКрепарирующего комплекса. Процесс позволяющий живым организмам восстанавливать повреждения возникающие в ДНК называют репарацией. Все репарационные механизмы основаны на том что ДНК двухцепочечная молекула т.
Русский
2015-02-20
137.99 KB
2 чел.
Повреждение и репарация ДНК. Ферменты ДНК-репарирующего комплекса.
Процесс, позволяющий живым организмам восстанавливать повреждения, возникающие в ДНК, называют репарацией. Все репарационные механизмы основаны на том, что ДНК - двухцепочечная молекула, т.е. в клетке есть 2 копии генетической информации. Если нуклеотидная последовательность одной из двух цепей оказывается повреждённой (изменённой), информацию можно восстановить, так как вторая (комплементарная) цепь сохранена. Процесс репарации происходит в несколько этапов. На первом этапе выявляется нарушение комплементарности цепей ДНК. В ходе второго этапа некомплементарный нуклеотид или только основание устраняется, на третьем и четвёртом этапах идёт восстановление целостности цепи по принципу комплементарности. Однако в зависимости от типа повреждения количество этапов и ферментов, участвующих в его устранении, может быть разным. Очень редко происходят повреждения, затрагивающие обе цепи ДНК, т.е. нарушения структуры нуклеотидов комплементарной пары. Такие повреждения в половых клетках не репарируются, так как для осуществления сложной репарации с участием гомологичной рекомбинации требуется наличие диплоидного набора хромосом.
Спонтанные повреждения Нарушения комплементарности цепей ДНК могут происходить спонтанно, т.е. без участия каких-либо повреждающих факторов, например в результате ошибок репликации, дезаминирования нуклеотидов, депуринизации.
Ошибки репликации. Точность репликации ДНК очень велика, но примерно один раз на 105-106 нуклеотидных остатков происходят ошибки спаривания, и тогда вместо пары нуклеотидов А-Т, G-С в дочернюю цепь ДНК оказываются включёнными нук-леотиды, некомплементарные нуклеотидам матричной цепи. Однако ДНК-полимеразы δ, ε способны после присоединения очередного нук-леотида в растущую цепь ДНК делать шаг назад (в направлении от 3'- к 5'- концу) и вырезать последний нуклеотид, если он некомплементарен нуклеотиду в матричной цепи ДНК. Этот процесс исправления ошибок спаривания (или коррекция) иногда не срабатывает, и тогда в ДНК по окончании репликации остаются некомплементарные пары, тем более, что ДНК-полимераза а лишена корректирующего механизма и "ошибается" чаще, чем другие полимеразы. При неправильном спаривании в первичной структуре дочерней цепи ДНК необычные основания не появляются, нарушена только ком-плементарность. Система репарации некомплементарных пар должна происходить только на дочерней цепи и производить замену некомплементарных оснований только в ней. Ферменты, участвующие в удалении неправильной пары нуклеотидов, распознают матричную цепь по наличию метилированных остатков аденина в последовательностях -GATC-. Пока основания нуклеотидных остатков в дочерней цепи неметилированы, ферменты должны успеть выявить ошибку репликации и устранить её. Распознавание и удаление (первый этап) некомплементарного нуклеотида происходят при участии специальных белков mut S, mut L, mut H. Каждый из белков выполняет свою специфическую функцию. Mut S находит неправильную пару и связывается с этим фрагментом. Mut Н присоединяется к метилированному (по аденину) участку -GATC-, расположенному вблизи некомплементарной пары. Связующим между mut S и mut Н служит белок mut L, его присоединение завершает образование активного фермента. Формирование комплекса mut S, mut L, mut Н на участке, содержащем ошибку, способствует проявлению у белка mut Н эндонуклеазной активности. Ферментативный комплекс гидролизует фосфоэфирную связь в неметилированной цепи. К свободным концам цепи присоединяется экзонуклеаза (второй этап). Отщепляя по одному нуклеотиду в направлении от 3'- к 5'- концу дочерней цепи, она устраняет участок, содержащий некомплементарную пару. Брешь застраивает ДНК-полимераза β (третий этап), соединение основного и вновь синтезированного участков цепи катализирует фермент ДНК-лигаза (четвёртый этап). Для успешного функционирования экзонуклеазы, ДНК-полимеразы р и ДНК-лигазы необходимо участие в репарации хеликазы и SSB-белков.
Депуринизация (апуринизация). ДНК каждой клетки человека теряет за сутки около 5000 пуриновых остатков вследствие разрыва N-гликозидной связи между пурином и дезоксирибозой. Тогда в молекуле ДНК на месте этих оснований образуется участок, лишённый азотистых оснований, названный АП-сайтом (AP-site, или апуриновый сайт). Термин "АП-сайт" используют также в тех случаях, когда из ДНК выпадают пиримидиновые основания и образуются апиримидиновые сайты (от англ, apurinic-apyrimidinic site). Этот тип повреждений устраняет фермент ДНК-инсертаза (от англ, insert - вставлять), который может присоединять к дезоксирибозе основание в соответствии с правилом компле-ментарности. В этом случае нет необходимости разрезать цепь ДНК, вырезать неправильный нуклеотид и репарировать разрыв.
Дезаминирование Реакции дезаминирования цитозина и превращение его в урацил (рис. 4-23), аденина в гипоксантин, гуанина в ксантин происходят значительно реже, чем депуринизация, и составляют 10 реакций на один геном в сутки. Исправление этого вида спонтанного повреждения происходит в 5 этапов. В репарации принимает участие ДНК-N-гликозилаза, гидролизующая связи между аномальным основанием и дезоксирибозой (первый этап), в результате образуется АП-сайт, который распознаёт фермент АП-эндонуклеаза (второй этап). Как только в цепи ДНК возникает разрыв, в работу вступает ещё один фермент - АП-экзонуклеаза, который отщепляет от цепи дезоксирибозу, лишённую основания (третий этап). В цепи ДНК появляется брешь размером в один нуклеотид. Следующий фермент ДНК-полимераза р к З'-концу разорванной цепи присоединяет нуклеотид по принципу комплементарности (четвёртый этап). Чтобы соединить два свободных конца (3'-конец встроенного нуклеотида и 5'-конец основной цепи), требуется ещё один фермент - ДНК-лигаза (пятый этап).Нерепарйруемо и поэтому опасно дезаминирование метилированного цитозина. Продукт его спонтанного дезамжнирования - тимин, нормальное для ДНК основание, которое не распознаётся ДНК-N-гликозилазой.
Индуцируемые повреждения. Индуцируемые повреждения возникают в ДНК в результате воздействия разнообразных мутагенных факторов как радиационной, так и химической природы.
Образование димеров пиримидиновых оснований. Под действием УФО двойная связь между С5 и С6 атомами углерода в составе пиримидиновых оснований (тимине и цитозине) может разрываться. Атомы углерода остаются связанными одной связью. Расстояние между параллельными плоскостями оснований полинуклеотидной цепи, в которых произошёл разрыв., равно примерно 3,4 . Это расстояние позволяет освободившимся валентностям между С-С атомами пиримидиновых оснований, расположенных последовательно в цепи ДНК, сформировать циклобутановое кольцо. В зависимости от того, какие основания соединены в димер, их называют димерами тимина, цитозина или ти-мин-цитозиновыми димерами. Удаление пиримидиновых димеров происходит под действием фотолиазы. Фермент расщепляет вновь образовавшиеся связи между соседними пиримидиновыми основаниями и восстанавливает нативную структуру. В фотолиазе есть участок, либо сам поглощающий фотоны (в синей части спектра), либо связывающийся с кофакторами, адсорбирующими свет. Таким образом, свет активирует фотолиазу, которая распознаёт димеры в облучённой ДНК, присоединяется к ним и разрывает возникшие между пиримидиновыми кольцами связи. После этого фермент отделяется от ДНК.
Повреждения оснований ДНК химическими мутагенами. Азотистые основания в ДНК могут подвергаться разнообразным повреждениям: алкилированию, окислению, восстановлению или связыванию основания с формамидными группировками. Репарация начинается с присоединения ДНК-N-гликозилазы к повреждённому основанию. Существует множество ДНК-М-гликозилаз, специфичных к разным модифицированным основаниям. Ферменты гидролитически расщепляют N-гликозидную связь между изменённым основанием и дезоксирибозой, это приводит к образованию АП-сайта в цепи ДНК (первый этап). Репарация АП-сайта может происходить или только при участии ДНК-инсертазы, которая присоединяет к дезоксирибозе основание в соответствии с правилом комплементарности, или при участии всего комплекса ферментов, участвующих в репарации: АП-эндонуклеазы, АП-экзонуклеазы, ДНК-полимеразы β и ДНК-лигазы.
А также другие работы, которые могут Вас заинтересовать | |||
6962. | Назначение режима резания при сверлении, зенкеровании и развертывании | 143 KB | |
Назначение режима резания при сверлении, зенкеровании и развертывании Цель работы: изучить методику назначения режимов резания по таблицам нормативов. Ознакомиться и приобрести навыки работы с нормативами. Задание: На вертикально-сверлильном станке ... | |||
6963. | Серебренный век в русском искусстве | 1.4 MB | |
Введения Тема меня заинтересовала сразу, потому что считал серебренный век одна из важнейших частей нашей культурной истории России. Задача как можно больше рассказать и пояснить о особенностях серебренного века. Описать каждую из отраслей серебренн... | |||
6964. | Учет изменений, вызванных развитием застроенных территорий населенного пункта в государственном кадастре недвижимости (на примере г. Сухой Лог) | 1 MB | |
В связи с постоянным развитием и перепланировкой городских территорий, изменением социальных, технических требований возникает необходимость проведения реконструкции. Это вызвано и экономической важностью более эффективного использования... | |||
6965. | Исследование деятельности ОАО Банка Петрокоммерц | 1.34 MB | |
Глава 1. Правовые и экономические основы деятельности ОАО Банка Петрокоммерц. Правовое положение Открытое акционерное общество Коммерческий банк Петрокоммерц, именуемое в дальнейшем Банк, является кредитной организацией, созданной по решению внеочер... | |||
6966. | Моделирование автоклава с ПИД-регулятором | 759.17 KB | |
Содержание пояснительной записки Введение 1. Технологический процесс. Автоматическое регулирование. Виды и преимущества регуляторов. ПИД-регулятор. Автоклав 2. Моделирование автоклава с ПИД-регулятором 3. Вычислительный эксперимент ПИД-регуляторов н... | |||
6967. | Понятие о поле. Физические поля, используемые в интроскопии | 18.23 KB | |
Понятие о поле. Физические поля, используемые в интроскопии. Поле, особая форма материи физическая система, обладающая бесконечно большим числом степеней свободы. Примерами поля могут служить электромагнитное и гравитационное поля, поле ядерных сил... | |||
6968. | Изучение диполя. Волновая зона. Мощность изучения диполя | 19.49 KB | |
Изучение диполя. Волновая зона. Мощность изучения диполя Диполь идеализированная система, служащая для приближённого описания распространения поля. Дипольное приближение основано на разложении потенциалов поля в ряд по степеням радиус-вектора... | |||
6969. | Рассеяние и дифракция акустических и электромагнитных волн | 23.5 KB | |
Рассеяние и дифракция акустических и электромагнитных волн. Акустические и электромагнитные волны, распространяющиеся в различных средах и устройствах, подчиняются единым волновым законам. Это явления возбуждения волн конкретными источниками, отраже... | |||
6970. | Предварительный расчёт валов редуктора | 31 KB | |
Предварительный расчёт валов редуктора. Быстроходный вал. Находим диаметр выходного конца вала: Согласно схеме привода быстроходный вал редуктора соединяется с валом электродвигателя упругой втулочно-пальцевой муфтой, поэтому целесообразно с... | |||