81520

Роль транспортных РНК в биосинтезе белков. Биосинтез аминоацил-т-РНК. Субстратная специфичность аминоацил-т-РНК-синтетаз

Доклад

Биология и генетика

У человека около 50 различных тРНК обеспечивают включение аминокислот в белок. тРНК называют адапторные молекулы так как к акцепторному концу этих молекул может быть присоединена определённая аминокислота а с помощью антикодона они узнают специфический кодон на мРНК. В процессе синтеза белка на рибосоме связывание антикодонов тРНК с кодонами мРНК происходит по принципу комплементарности и антипараллельности.

Русский

2015-02-20

125.71 KB

6 чел.

Роль транспортных РНК в биосинтезе белков. Биосинтез аминоацил-т-РНК. Субстратная специфичность аминоацил-т-РНК-синтетаз.

тРНК. У человека около 50 различных тРНК обеспечивают включение аминокислот в белок. тРНК называют " адапторные молекулы", так как к акцепторному концу этих молекул может быть присоединена определённая аминокислота, а с помощью антикодона они узнают специфический кодон на мРНК. В процессе синтеза белка на рибосоме связывание антикодонов тРНК с кодонами мРНК происходит по принципу комплементарности и антипараллельности. Однако оказалось, что число тРНК для каждой аминокислоты не совпадает с числом кодирующих её кодонов в мРНК, и, следовательно, некоторые тРНК способны связываться больше чем с одним кодоном.

Исследование этого вопроса позволило установить следующее:

  1.  первые два основания кодона и последние два основания антикодона образуют обычные прочные пары (гуанинцитозин и аденинурацил) и вносят наибольший вклад в специфичность декодирования;
  2.  связывание третьего основания кодона с первым основанием антикодона происходит слабее, чем с первыми двумя, и это позволяет некоторым тРНК прочитывать больше чем один кодон.

Гипотеза, объясняющая характер кодонан-тикодонового взаимодействия, получила название"гипотезы качания" (т.е. третье основание большинства кодонов имеет определённую степень свободы при образовании пары с соответствующим антикодоном и как бы "качается"). Так, например, одна из аргининовых тРНК имеет антикодон 5'-I-C-G-3', который может узнавать 3 разных аргининовых кодона

Аминоацил-тРНК синтетазы (аминоацил-тРНК лигазы). В цитозоле клеток 20 различных аминокислот присоединяются α-карбоксильной группой к 3'-гидроксильному акцепторному концу соответствующих тРНК с образованием сложноэфирной связи. Эти реакции катализирует семейство ферментов, носящее название аминоацил-тРНК синтетаз (аа-тРНК-синтетаз). Каждый член этого семейства узнаёт только одну определённую аминокислоту и те тРНК, которые способны связываться с этой аминокислотой. Из этого следует, что в группу тРНК синтетаз входит 20 различных ферментов. Они осуществляют активацию аминокислот в 2 стадии: на первой стадии аминокислота присоединяется к ферменту и реагирует с АТФ с образованием богатого энергией промежуточного соединения - аминоацил-АМФ. На второй стадии аминоацильный остаток аминоациладенилата, оставаясь связанным с ферментом, взаимодействует с молекулой соответствующей тРНК с образованием аминоацил-тРНК.

Суммарную реакцию, катализируемую аминоацил-тРНК синтетазами в присутствии ионов Mg2+, можно представить следующим образом:

Аминокислота +тРНК + АТФ -> аминоацил - тРНК + АМФ + PPi.

Для каждой аминокислоты существует свой фермент - своя аминоацил тРНК синтетаза: для глутамата - глутамил-тРНК синтетаза, гистидина - гистидил-тРНК синтетаза и т.д. Аминокислоты присоединяются к 3'- или 2'-ОН группам рибозы на 3'-конце тРНК, где все тРНК имеют общую нуклеотидную последовательность -ССА. Энергия, заключённая в макроэргической сложноэфирной связи аминоацил-тРНК, впоследствии используется на образование пептидной связи в ходе синтеза белка. Пирофосфат, выделяющийся в ходе этой реакции, гидролитически расщепляется с образованием двух молекул ортофосфата и выделением энергии, что делает реакцию активации аминокислот необратимой. Чрезвычайно высокая специфичность аа-тРНК синтетаз в связывании аминокислоты с соответствующими тРНК лежит в основе точности трансляции генетической информации. В активном центре этих ферментов есть 4 специфических участка для узнавания: аминокислоты, тРНК, АТФ и четвёртый - для присоединения молекулы Н2О, которая участвует в гидролизе неправильных аминоациладенилатов. За счёт существования в активном центре этих ферментов корректирующего механизма, обеспечивающего немедленное удаление ошибочно присоединённого аминокислотного остатка, достигается поразительно высокая точность работы: на 1300 связанных с тРНК аминокислот встречается только одна ошибка. Аминокислота, присоединяясь к тРНК, в дальнейшем не определяет специфических свойств аа-тРНК, так как её структуру не узнаёт ни рибосома, ни мРНК. Участие в синтезе белка зависит только от структуры тРНК, а точнее, от комплементарного взаимодействия антикодона аминоацил-тРНК с кодоном мРНК. Антикодон расположен в центральной (антикодоновой) петле тРНК. Узнавание тРНК аа-тРНК синтетазами не всегда происходит по антикодоновой петле. Активный центр некоторых ферментов обнаруживает комплементарное соответствие другим участкам пространственной структуры тРНК.


 

А также другие работы, которые могут Вас заинтересовать

10041. Смешанные криптосистемы 35 KB
  Смешанные криптосистемы. В настоящее время в системах связи общего назначения широко распространены смешанные гибридные криптосистемы у которых конфиденциальность сообщений обеспечивается за счет шифрования с помощью симметричной криптосистемы рассылка ключей д
10042. Функция Эйлера. Доказательство теорем Эйлера и Ферма 54.5 KB
  Пусть m>1 целое число и а вычет по модулю m. Порядок является наименьшим положительным числом для которого выполняется сравнение. Порядок числа по модулю обозначается. Функция Эйлера. Порядки чисел по модулю различны. Существуют числа являюще
10043. Цифровая подпись Ель Гамаля 37 KB
  Цифровая подпись Ель Гамаля основывается на односторонней функции дискретного возведения в степень обратной к которой является дискретный логарифм. Механизм цифровой подписи Эль Гамаля широко используется на практике для организации аналогичных схем цифровой подписи...
10044. Линейная двоичная рекуррентная последовательность 39 KB
  Линейная двоичная рекуррентная последовательность. В криптосхемах потоковых шифров широко применяются криптоузлы основанные на т.н. регистрах сдвига с обратной связью. Наиболее простым узлом является т.н. двоичный регистр сдвига с линейными обратными связями РСЛОС...
10045. Тестирование чисел на простоту, случайные и детерминированные тесты. Тест малой теоремы Ферма 46 KB
  Тестирование чисел на простоту случайные и детерминированные тесты. Тест малой теоремы Ферма При использовании асимметричных криптосистем возникает необходимость построения сверхбольших псевдослучайных простых чисел. Соответствующие вычислительные процедуры
10046. Тест Соловея-Штрассена проверки чисел на простоту 38.5 KB
  Тест Соловея-Штрассена проверки чисел на простоту. При тестировании чисел на простоту с помощью вероятностного теста основанного на малой теореме Ферма может возникнуть ситуация когда вероятность ошибки не снижается с количеством повторений теста. В этом случае ...
10047. Тест Рабина-Миллера проверки чисел на простоту 57 KB
  Тест Рабина-Миллера проверки чисел на простоту. При тестировании чисел на простоту с помощью вероятностного теста основанного на малой теореме Ферма может возникнуть ситуация когда вероятность ошибки не снижается с количеством повторений теста. В этом случае она...
10048. Общие сведения об иностранных криптосредствах 30.5 KB
  Общие сведения об иностранных криптосредствах Рынок иностранных криптосредств очень широк: от криптосистем индивидуального использования до криптосредств военного предназначения. Порядок приобретения и использования криптосредств регулируется национальным зако...
10049. Определение хэш-функции 46.5 KB
  Определение хэш-функции. Хэш-функция преобразование битовой строки произвольной длины в битовую строку блок фиксированной длины обычно 160512 битов обладающее следующими свойствами. Восстановление m по исходя из соотношения вычислительно нереализуем...