81525

Генетическая гетерогенность. Полиморфизм белков в популяции человека (варианты гемоглобина, гликозилтрансферазы, группоспецифических веществ и др)

Доклад

Биология и генетика

Группы крови. Другой важный пример полиморфизма белков связанный с проблемой переливания крови существование в популяции людей 3 аллельных вариантов гена фермента гликозилтрансферазы А В и 0. Антитела к антигенам А и В обычно имеются в сыворотке крови людей на поверхности эритроцитов которых отсутствует соответшвующий антиген т. индивидуумы с антигенами А на поверхности эритроцитов продуцируют в сыворотку крови антитела к Вантигенам антиВ а люди с Вантигенами антитела к антигенам А антиА.

Русский

2015-02-20

107.01 KB

1 чел.

Генетическая гетерогенность. Полиморфизм белков в популяции человека (варианты гемоглобина, гликозилтрансферазы, группоспецифических веществ и др).

Полиморфизм белков. Поскольку большинство нормальных клеток человека диплоидны, то они содержат две копии каждой хромосомы, одна из которых получена от отца, а вторая от матери. Эти две копии одной и той же хромосомы называют гомологичными. В ДНК каждой хромосомы содержится более тысячи генов. Соответствующие друг другу гены в гомологичных хромосомах называют аллелями. Аллели могут быть идентичными и содержат одинаковую последовательность нуклеотидов. В этом случае индивидуум, имеющий такие аллели, будет гомозиготен по данному признаку. Если аллели различаются по последовательности нуклеотидов в ДНК, то говорят о гетерозиготном наследовании гена. В этом случае индивидуум будет иметь 2 белковых продукта гена, различающихся по аминокислотной последовательности. У каждого человека существует только 2 разных аллеля одного гена, тогда как в популяции людей вариантов аллелей может быть огромное множество. Как уже говорилось ранее, изменчивость структуры ДНК, а следовательно разнообразие аллелей, обусловлено мутационным процессом и рекомбинациями в гомологичных хромосомах половых клеток. Если в ходе мейоза рекомбинации сопровождаются обменом участками ДНК, меньшими по размеру, чем ген, то такой процесс может приводить к появлению новых, прежде не существовавших аллелей. А поскольку рекомбинации - более частые события, чем мутации в кодирующих участках гена, то разнообразие вариантов аллелей обусловлено главным образом ими. Существование в популяции 2 и большего числа аллелей одного гена называют "аллеломорфизм", или "полиморфизм", а белковые продукты, образующиеся в ходе экспрессии этих вариантов гена - "полиморфы". Разные аллели встречаются в популяции с разной частотой. К полиморфам относят только те варианты, распространённость которьж в популяции не меньше 1%. В процессе эволюции отдельные гены амплифицируют с образованием копий, а их структура и положение могут изменяться в результате мутаций и перемещений не только внутри хромосомы, но и между хромосомами. Со временем это приводит к появлению новых генов, кодирующих белки, родственные исходному, но отличающиеся от него определёнными свойствами и занимающие в хромосомах разные генные локусы (или места). К родственным белкам относят изобелки, представляющие собой варианты белков, выполняющие одну и ту же функцию и обнаруживаемые в пределах одного вида организмов. Так, в группе из 2000 генов человека, кодирующих факторы транскрипции и транскрипционные активаторы, идентифицировано 900, относящихся к семейству белков, имеющих "цинковые пальцы". Существует 46 генов фермента глицеральдегид-3-фосфатдегидрогеназы, осуществляющего единственную окислительную реакцию в метаболическом пути катаболизма глюкозы до пирувата. Выявлены семейства родственных белков, возникшие в ходе эволюции из одного "предкового" гена, или гена-предшественника. Такие семейства составляют:

  1.  гены миоглобина и протомеров гемоглобинов;
  2.  группа протеолитических ферментов: трипсин, химотрипсин, эластаза, гшазмин, тромбин и некоторые другие белки и ферменты.

Группы крови. Другой важный пример полиморфизма белков, связанный с проблемой переливания крови, - существование в популяции людей 3 аллельных вариантов гена фермента гликозилтрансферазы (А, В и 0). Этот фермент принимает участие в синтезе олигосахарида, локализованного на наружной поверхности плазматической мембраны и определяющего антигенные свойства эритроцитов. Варианты фермента А и В имеют разную субстратную специфичность: вариант А катализирует присоединение к олигосахариду N-ацетилгалактозамина, а вариант В - галактозы. Вариант О кодирует белок, лишённый ферментативной активности. В результате структура олигосахаридов, расположенных на поверхности эритроцитов, будет разной. Антитела к антигенам А и В обычно имеются в сыворотке крови людей, на поверхности эритроцитов которых отсутствует соответшвующий антиген, т.е. индивидуумы с антигенами А на поверхности эритроцитов продуцируют в сыворотку крови антитела к В-антигенам (анти-В), а люди с В-антигенами ~ антитела к антигенам А (анти-А). В сыворотке крови анти-А и анти-В обычно присутствуют в высоких титрах и при появлении соответствующих антигенов способны активировать ферменты системы комплемента. При переливании крови руководствуются правилом, согласно которому кровь донора и реципиента не должна содержать антигены и антитела, реагирующие между собой: например, реципиенту, имеющему в сыворотке крови анти-А, нельзя переливать кровь от донора, содержащего на эритроцитах антигены А. При нарушении этого правила происходит реакция антиген-антитело. Это вызывает агглютинацию (склеивание) эритроцитов и их разрушение ферментами комплемента и фагоцитами. У индивидуумовгетерозигот, имеющих группу крови АВ (IV), на эритроцитах присутствуют А- и В-антигены, функционируют 2 варианта глйкозилтрансферазы (А и В), а следовательно антитела не образуются. Этих людей можно рассматривать как "универсальных" реципиентов, которым безопасно вводить эритроциты от доноров, имеющих любые группы крови. Однако люди с группой крови IV не могут безопасно получать сыворотку крови от этих доноров, так как она содержит антитела к А- и/или В-антигенам. В то же время индивидуумы, имеющие 0 (I) группу крови, - гомозиготы по неактивному варианту гликозилтранеферазы 0, и поверхность их эритроцитов лишена антигенов. Такие люди являются "универсальными" донорами эритроцитарной массы, так как их эритроциты можно вводить людям с группами крови А, В, 0 или АВ. В то же время сыворотка крови этих доноров содержит антитела к А- и В-антигенам и может использоваться только для пациентов 0 (I) группы крови.

Белки главного комплекса гистосовместимости и трансплантационная несовместимость. При формировании клеточного иммунного ответа узнавание Т-лимфоцитами чужеродного антигена происходит только если он расположен рядом с гликопротеинами, присутствующими на собственной клеточной мембране. Эти гликопротеины называют белками главного комплекса гистосовместимости, или МНС-белками. Существуют 2 класса этих белков: молекулы класса I и П. МНС-белки класса I обнаружены практически во всех содержащих ядро клетках, включая Т-киллеры, тогда как МНС-белки класса II найдены главным образом в клетках, участвующих в иммунном ответе, в антиген-представляющих В-клетках и Т-хелперах, но не в Т-киллерах и макрофагах. Строение МНС-белков кодирует семейство генов, расположенных на коротком плече хромосомы 6 и занимающих участок ДНК длиной более 6000 пар нуклеотидов. Это семейство состоит из серии тесно сцепленных генов, ответственных за синтез МНС-белков и некоторых компонентов системы комплемента. Гены комплекса отличаются чрезвычайно высоким полиморфизмом. Число разных аллелей достигает нескольких миллионов. Белки МНС-системы считают самой полиморфной системой человека. Вариабельность МНС-белков обеспечивает трансплантационную несовместимость. Клетки трансплантата имеют набор этих белков, отличный от МНС-белков реципиента (во всех случаях, кроме генетически идентичных близнецов), и это приводит к развитию реакции клеточного иммунитета, в результате которой трансплантированная ткань отторгается. Исследования показали, что полиморфизм различных белков настолько велик, что можно говорить о биохимической индивидуальности и уникальности каждого человека.


 

А также другие работы, которые могут Вас заинтересовать

45275. Коммутация каналов, пакетов, сообщений 35.5 KB
  Сеть связи switching network представляет собой совокупность технических средств предназначенных для передачи приема информации и состоит из абонентских устройств АУ линий связи и коммутационных узлов КУ.1 – Фрагмент сети связи Лицо пользующееся абонентским устройством для передачи приема информации называется абонентом. Для передачи приема информации между удаленными коммутационными узлами используют каналы связи которые образуются при помощи многоканальных систем передачи. Он характеризуется тем что канал между передатчиком и...
45276. Принципы построения цифровых коммутаторов (пространственный, временной). Адресная и информационная память 201.5 KB
  Номер ячейки памяти определяет номер канала на выходе а адрес который в ней записан определяет ту ячейку ИП которую нужно открыть на данном канальном интервале. Схема коммутации и управляющей памяти является общей. Число разрядов в ячейках управляющей памяти равно N=log n. В каждой ячейке управляемой памяти записываются адреса схем И которые необходимо открыть в период канального интервала соответствующего номеру ячейки управляющей памяти.
45277. Обобщенная структурная схема цифровой АТС. Преобразование аналогового сигнала в цифровую форму 87 KB
  Преобразование аналогового сигнала в цифровую форму. МАЛ содержит абонентские комплекты АК взаимодействие оборудования АТСЭ с оконечным устройством пользователя и мультиплексор цифрового тракта Мх мультиплексирование индивидуальных Вканалов МЦК содержит коммутационное поле КПпроизводит коммутацию любого канального интервала time slot любого входящего тракта с любым канальным интервалом любого исходящего тракта линейные комплекты ЛКтобеспечивает синхронизацию ИКМ трактов и преобразование линейного сигнала генератор...
45278. Идеология и архитектура Softswitch коммутатора 135.5 KB
  Идеология и архитектура Softswitch коммутатора. Рисунок по архитектуре Softswitch является носителем интеллектуальных возможностей сети который координирует управление обслуживанием вызовов сигнализацию и функции обеспечивающие установление соединения через одну или несколько сетей. Фактически Softswitch остается тем же привычным коммутационным узлом но без цифрового коммутационного поля кросса и т. Термин Softswitch был придуман при разработке интерфейса между интерактивной речевой системой IVR и АТС с коммутацией каналов в...
45279. Многоканальные разговорные ИКМ - тракты с временным разделением каналов (ВРК) 136.5 KB
  Многоканальные разговорные ИКМ тракты с временным разделением каналов ВРК. тракты с временным разделением каналов ВРК. Цифровая система передачи ИКМ30 предназначена для формирования абонентских и соединительных линий ГТС и пригородной связи и позволяет организовать до 30 каналов ТЧ по парам низкочастотного кабеля ГТС а при наличии соответствующего оборудования сопряжения и линейного тракта каналоформирующая аппаратура ИКМ30 может использоваться для систем передачи по оптическим кабелям. Остальные 30 каналов используются для...
45280. Архитектура и интерфейсы GSM (мобильная станция, подсистема базовых станций, центр коммутации, домашний и визитный регистры) 62.5 KB
  Центр коммутации осуществляет постоянное слежение за подвижными станциями используя домашний регистр местоположения HLR и визитный регистр местоположения VLR. Ведется регистрация данных об изменении местоположения и роуминге блуждании абонента включая данные о временном идентификационном номере подвижного абонента TMSI Temporry Mobile Subscriber Identity и соответствующем визитном регистре местоположения VLR. Местоположение мобильных станций находится обычно в форме адреса данной мобильной станции в VLR. К данным содержащимся...
45281. Архитектура и интерфейсы GSM (регистры защиты и аутентификации, оборудование эксплуатации и технического обслуживания) 111.5 KB
  Сеть GSMвключает 3 основные части: мобильные станции MSкоторые перемещаются вместе с абонентом; подсистема базовых станций BSкоторая управляет радиолинией связи с мобильной станцией; подсистема сети SSS главную часть которой составляет центр коммутации мобильной связи MSC – он выполняет коммутацию между мобильными станциями а также между мобильными или стационарными сетевыми пользователями. Регистр идентификации оборудования база данных которая содержит список всей допустимой к обслуживанию подвижной аппаратуры на сети...
45282. Основные принципы организации сети GSM (интерфейсы, географические зоны, использование частот) 251 KB
  Основные принципы организации сети GSM интерфейсы географические зоны использование частот. Внутренние интерфейсы GSM Внутренние интерфейсы показаны и перечислены в таблице Таблица 1. Типы внутренних интерфейсов сети GSM Тип Связь между устройствами MSCBSS bis BSCBTS B MSCVLR C MSCHLR D HLRVLR E MSCMSC O BSCOMC M BSCTCE Um MSBTS X OMCOMC Примечание: Xинтерфейс предназначен для связи OMC различных GSM Аинтерфейс. Интерфейс между MSC и BSS подсистема базовых станций –BSC BTS обеспечивает передачу сообщений для управления...
45283. Каналы сигнализации и трафика в системе GSM (состав принципы использования) 88.5 KB
  Каналы сигнализации и трафика в системе GSM состав принципы использования. Очевидно что использование радиоканалов в мобильной сети GSM отличается от их применения в стационарной сети. Принцип использования каналов в системе GSM показан на рис. В стационарной сети абонентские линии абонентские каналы трафика закреплены за телефонным аппаратом.