81546

Повреждение мембран в результате перекисного окисления липидов. Механизмы защиты от токсического действия кислорода: неферментативные (витамины Е, С, глутатион и др.) и ферментативные (супероксиддисмутаза, каталаза, глутатионпероксидаза)

Доклад

Биология и генетика

Активация перекисного окисления характерна для многих заболеваний: дистрофии мышц болезнь Дюшенна болезни Паркинсона при которых ПОЛ разрушает нервные клетки в стволовой части мозга при атеросклерозе развитии опухолей. Изменение структуры тканей в результате ПОЛ можно наблюдать на коже: с возрастом увеличивается количество пигментных пятен на коже особенно на дорсальной поверхности ладоней. Этот пигмент называют липофусцин представляющий собой смесь липидов и белков связанных между собой поперечными ковалентными связями и...

Русский

2015-02-20

114.75 KB

3 чел.

Повреждение мембран в результате перекисного окисления липидов. Механизмы защиты от токсического действия кислорода: неферментативные (витамины Е, С, глутатион и др.) и ферментативные (супероксиддисмутаза, каталаза, глутатионпероксидаза).

Повреждение клеток в результате перекрестное окислени лепидов

Активные формы кислорода повреждают структуру ДНК, белков и различные мембранные структуры клеток. В результате появления в гидрофобном слое мембран гидрофильных зон за счёт образования гидропероксидов жирных кислот в клетки могут проникать вода, ионы натрия, кальция, что приводит к набуханию клеток, органелл и их разрушению. Активация перекисного окисления характерна для многих заболеваний: дистрофии мышц (болезнь Дюшенна), болезни Паркинсона, при которых ПОЛ разрушает нервные клетки в стволовой части мозга, при атеросклерозе, развитии опухолей. Перекисное окисление активируется также в тканях, подвергшихся сначала ишемии, а затем реоксигенации, что происходит, например, при спазме коронарных артерий и последующем их расширении. Такая же ситуация возникает при образовании тромба в сосуде, питающем миокард. Формирование тромба приводит к окклюзии просвета сосуда и развитию ишемии в соответствующем участке миокарда (гипоксия ткани). Если принять быстрые лечебные меры по разрушению тромба, то в ткани восстанавливается снабжение кислородом (реоксигенация). Показано, что в момент реоксигенации резко возрастает образование активных форм кислорода, которые могут повреждать клетку. Таким образом, даже несмотря на быстрое восстановление кровообращения, в соответствующем участке миокарда происходит повреждение клеток за счёт активации перекисного окисления. Изменение структуры тканей в результате ПОЛ можно наблюдать на коже: с возрастом увеличивается количество пигментных пятен на коже, особенно на дорсальной поверхности ладоней. Этот пигмент называют липофусцин, представляющий собой смесь липидов и белков, связанных между собой поперечными ко-валентными связями и денатурированными в результате взаимодействия с химически активными группами продуктов ПОЛ. Этот пигмент фагоцитируется, но не гидролизуется ферментами лизосом, и поэтому накапливается в клетках, нарушая их функции. ПОЛ происходит не только в живых организмах, но и в продуктах питания, особенно при неправильном приготовлении и хранении пищи. Прогоркание жиров, образование более тёмного слоя на поверхности сливочного масла, появление специфического запаха у молочных продуктов - всё это признаки ПОЛ. В продукты питания, содержащие ненасыщенные липи-ды, обычно добавляют антиоксиданты - вещества, ингибирующие ПОЛ и сохраняющие структуру компонентов пищи.

Ферменты антиоксидантного действия

К ферментам, защищающим клетки от действия активных форм кислорода, относят супе-роксиддисмутазу, каталазу и глутатионпероксидазу; Наиболее активны эти ферменты в печени, надпочечниках и почках, где содержание митохондрий, цитохрома Р450 и пероксисом особенно велико. Супероксиддисмутаза (СОД) превращает супероксидные анионы в пероксид водорода:

2 + 2H+ → H2O2 + O2

Изоферменты СОД находятся и в цитозоле и в митохондриях и являются как бы первой линией защиты, потому что супероксидный анион образуется обычно первым из активных форм кислорода при утечке электронов из дыхательной цепи. СОД - индуцируемый фермент, т.е. синтез его увеличивается, если в клетках активируется перекисное окисление.

Пероксид водорода, который может инициировать образование самой активной формы ОН•, разрушается ферментом каталазой:

2Н2О2 → 2 Н2О + О2.

Каталаза находится в основном в пероксисомах, где образуется наибольшее количество пероксида водорода, а также в лейкоцитах, где она защищает клетки от последствий "респираторного взрыва".

Глутатионпероксидаза - важнейший фермент, обеспечивающий инактивацию активных форм кислорода, так как он разрушает и пероксид водорода и гидропероксиды липидов. Он катализирует восстановление пероксидов с помощью трипептида глутатиона (γ-глутамилцистеинилглицин). Сульфгидрильная группа глутатиона (GSH) служит донором электронов и, окисляясь, образует дисульфидную форму глутатиона, в которой 2 молекулы глутатиона связаны через дисульфидную группу.

Н2О2 + 2 GSH → 2 Н2О + G-S-S-G.

Окисленный глутатион восстанавливается глутатионредуктазой:

GS-SG + NADPH + Н+ → 2 GSH + NADP+.

Глутатионпероксидаза, которая восстанавливает гидропероксиды липидов в составе мембран, в качестве кофермента использует селен (необходимый микроэлемент пищи). При его недостатке активность антиоксидантной защиты снижается.

Витамины, обладающие антиоксидантным действием

Витамин Е (α-токоферол) - наиболее распространённый антиоксидант в природе - является липофильной молекулой, способной инактивировать свободные радикалы непосредственно в гидрофобном слое мембран и таким образом предотвращать развитие цепи перекисного окисления. Различают 8 типов токоферолов, но α-токоферол наиболее активен. Витамин Е отдаёт атом водорода свободному радикалу пероксида липида (ROO•), восстанавливая его до гидропероксида (ROOH) и таким образом останавливает развитие ПОЛ. Свободный радикал витамина Е, образовавшийся в результате реакции, стабилен и не способен участвовать в развитии цепи. Наоборот, радикал витамина Е непосредственно взаимодействует с радикалами липидных перекисей, восстанавливая их, а сам превращается в стабильную окисленную форму - токоферолхинон.

Витамин С (аскорбиновая кислота) также является антиоксидантом и участвует с помощью двух различных механизмов в ингибировании ПОЛ. Во-первых, витамин С восстанавливает окисленную форму витамина Е и таким образом поддерживает необходимую концентрацию этого антиоксиданта непосредственно в мембранах клеток. Во-вторых, витамин С, будучи водорастворимым витамином и сильным восстановителем, взаимодействует с водорастворимыми активными формами кислорода - , Н2О2, ОН• и инактивирует их.

β-Каротин, предшественник витамина А, также обладает антиоксидантаьш действием и ингибирует ПОЛ. Показано, что растительная диета, обогащённая витаминами Е, С, каротиноидами, существенно уменьшает риск развития атеросклероза и заболеваний ССС, подавляет развитие катаракты - помутнения хрусталика глаза, обладает антиканцерогенным действием. Имеется много доказательств в пользу того, что положительное действие этих компонентов пищи связано с ингибированием ПОЛ и других молекул и, следовательно, с поддержанием нормальной структуры компонентов клеток.


 

А также другие работы, которые могут Вас заинтересовать

15235. І.Есенберлиннің Көшпенділер романындағы жылқы атауларының этнолингвистикалық мәні 324 KB
  Еліміз егемендік алып, тіліміз мемлекеттік мәртебеге ие болуына байланысты қоғамда тарихи сана мен ұлттық таным көкжиегі кеңейе бастады. Осыған байланысты ұлттық рухани-мәдени мұраның тарихи маңызын саралап, қайта бағалау мүмкіндігі туып отыр
15236. Етістіктің лексика-грамматикалық сипаты 69 KB
  Етістіктің лексикаграмматикалық сипаты Етістік қазақ тіліндегі сөз таптарының ішіндегі ең күр делілерінің бірі. Оның күрделілігі лексикасемантикалық сипатынан грамматикалық формалары мен категорияларының көптігінен синтаксистік қізметінен айқын көрінеді. Е...
15237. Әбілғазы баһадүр ханның «Түркі шежіресіндегі» араб-парсы сөздерінің қолданылу ерекшелігі 277 KB
  Әбілғазы шығармасының тіл ғылымы үшін, оның ішінде түркітану ғылымы үшін маңызы зор екендігін Г.С.Саблуков өзінің аудармасының кіріспесінде былайша көрсетеді: «Исправно изданный Родословной был бы при скудости литературы на восточно-джагатайском наречии
15238. Әлем тілдерінің топтастырылуы 171.5 KB
  Әлем тілдерінің топтастырылуы Мазмұны 1. Тілдердің генеологиялық туыстық классификациясы. 2. Тілдердің типологиялық классификациясы. 5.1. Тілдердің генеологиялық туыстық классификациясы. Тілдердің генеологиялық ту...
15239. Әлемнің тілдік көрінісінің тіл мәдениетіндегі бейнесі 73.88 KB
  ӘЛЕМНІҢ ТІЛДІК КӨРІНІСІНІҢ ТІЛ МӘДЕНИЕТІНДЕГІ БЕЙНЕСІ О.Сапашев ШҚМУ Түркітану оқытуғылымизерттеу орталығының директоры филология ғылымдарының кандидаты Тілдің табиғилығы мен оның даму мәдениеті қадым заманнан бері көтеріліп келе жатқан мәселе бұл ұлт...
15240. Әңгімелеу мәтінінің тілдік-стилистикалық сипаты 283.5 KB
  Мәтін лингвистикасында зерттеуді аса қажет ететін маңызды мәселелердің бірі – әңгімелеу мәтінінің тілдік және стилистикалық ерекшелігін таныту. Әңгімелеу – тұтасым, байласым және мағыналық аяқталғандық, ақпарат беру категорияларына ие композициялық-сөйлеу формаларының бірі
15241. ИССЛЕДОВАНИЕ РАСПРЕДЕЛЕНИЙ СКОРОСТИ ПОТОКА НА ВХОДЕ В АКТИВНУЮ ЗОНУ РЕАКТОРА ВВЭР-1000, В УСЛОВИЯХ РАЗЛИЧНЫХ РАСХОДОВ ТЕПЛОНОСИТЕЛЯ В ОТДЕЛЬНЫХ ПЕТЛЯХ 1.23 MB
  Лабораторная работа №1 ИССЛЕДОВАНИЕ РАСПРЕДЕЛЕНИЙ СКОРОСТИ ПОТОКА НА ВХОДЕ В АКТИВНУЮ ЗОНУ РЕАКТОРА ВВЭР1000 В УСЛОВИЯХ РАЗЛИЧНЫХ РАСХОДОВ ТЕПЛОНОСИТЕЛЯ В ОТДЕЛЬНЫХ ПЕТЛЯХ Объект исследования: течение теплоносителя в кольцевом опускном тракте в части напорно...
15242. ИССЛЕДОВАНИЕ РАСПРЕДЕЛЕНИЙ ТЕМПЕРАТУРЫ (ИМИТАТОРА БОРА) НА ВХОДЕ В АКТИВНУЮ ЗОНУ В УСЛОВИЯХ РАЗЛИЧНЫХ РАСХОДОВ ТЕПЛОНОСИТЕЛЯ В ОТДЕЛЬНЫХ ПЕТЛЯХ 454 KB
  Лабораторная работа №3 ИССЛЕДОВАНИЕ РАСПРЕДЕЛЕНИЙ ТЕМПЕРАТУРЫ ИМИТАТОРА БОРА НА ВХОДЕ В АКТИВНУЮ ЗОНУ В УСЛОВИЯХ РАЗЛИЧНЫХ РАСХОДОВ ТЕПЛОНОСИТЕЛЯ В ОТДЕЛЬНЫХ ПЕТЛЯХ Объект исследования: изучение динамики распределения температуры при подогреве воды подав
15243. Моделирование линейных динамических систем 84.75 KB
  Лабораторная работа №1 Моделирование линейных динамических систем Вариант 1 I.Исследование модели входвыход Исходные данные: a0=9 a1=6 a2=3 b0=12 b1=2 b2=0.1 Начальные условия: y0=1 0=0.50=0 Дифференциальное уравнение описания системы: Рисунок 1