81551

Полиморфные формы гемоглобинов человека. Гемоглобинопатии. Анемические гипоксии

Доклад

Биология и генетика

Гемоглобинопатии. Анемические гипоксии Гемоглобины взрослого человека В эритроцитах взрослого человека гемоглобин составляет 90 от всех белков данной клетки. Гемоглобин А основной гемоглобин взрослого организма составляет около 98 от общего количества гемоглобина тетрамер состоит из 2 полипептидных цепей α и 2 β 2α2β.

Русский

2015-02-20

135.14 KB

3 чел.

Полиморфные формы гемоглобинов человека. Гемоглобинопатии. Анемические гипоксии

Гемоглобины взрослого человека

В эритроцитах взрослого человека гемоглобин составляет 90% от всех белков данной клетки.

  1.  Гемоглобин А - основной гемоглобин взрослого организма, составляет около 98% от общего количества гемоглобина, тетрамер, состоит из 2 полипептидных цепей α и 2 β (2α2β).
  2.  Гемоглобин A2 находится в организме взрослого человека в меньшей концентрации, на его долю приходится около 2% общего гемоглобина. Он состоит из 2 α- и 2 δ-цепей.
  3.  Гемоглобин А1с - гемоглобин А, модифицированный ковалентным присоединением к нему глюкозы (так называемый гликозилированный гемоглобин).

Гемоглобины, синтезирующиеся в период внутриутробного развития плода:

  1.  Эмбриональный гемоглобин синтезируется в эмбриональном желточном мешке через несколько недель после оплодотворения. Представляет собой тетрамер 2α2ε. Через 2 нед после формирования печени плода в ней начинает синтезироваться гемоглобин F, который к 6 мес замещает эмбриональный гемоглобин.
  2.  Гемоглобин F - фетальный гемоглобин, синтезируется в печени и костном мозге плода до периода его рождения. Имеет тетрамерную структуру, состоящую из 2 α- и 2 γ-цепей. После рождения ребёнка постепенно замещается на гемоглобин А, который начинает синтезироваться в клетках костного мозга уже на 8-м месяце развития плода.

Гемоглобинопатия — наследственное или врождённое изменение или нарушение структуры белка гемоглобина, обычно приводящее к клинически или лабораторно наблюдаемым изменениям в его кислород-транспортирующей функции либо в строении и функции эритроцитов.

Классическим примером наследственной гемоглобинопатии является серповидно-клеточная анемия, широко распространенная в странах Южной Америки, Африки и Юго-Восточной Азии. При этой патологии эритроциты в условиях низкого парциального давления кислорода принимают форму серпа. Гемоглобин S, как показали Л. Полинг и др., отличается рядом свойств от нормального гемоглобина: в частности, после отдачи кислорода в тканях он превращается в плохо растворимую дез-окси-форму и начинает выпадать в осадок в виде веретенообразных кристаллоидов, названных тактоидами. Последние деформируют клетку и приводят к массивному гемолизу. Болезнь протекает остро, и дети, гомозиготные по мутантному гену, часто умирают в раннем возрасте. Химический дефект при серповидно-клеточной анемии был раскрыт В. Ингремом и сводится к замене единственной аминокислоты, а именно глутаминовой, в 6-м положении с N-конца на валин в β-цепях молекулы гемоглобина HbS. Это результат мутации в молекуле ДНК, кодирующей синтез β-цепи гемоглобина. Все остальные аминокислоты располагаются в той же последовательности и в таком же количестве, как и в нормальном гемоглобине НЬА. Одной этой замены оказалось достаточно не только для нарушения формы эритроцита, но и для развития тяжелой наследственнойболезни – серповидно-клеточной анемии. Талассемии, строго говоря, не являются гемоглобинопатиями. Это генетически обусловленное нарушение синтеза одной из нормальных цепей гемоглобина. Если угнетается синтез β-цепей, то развивается β-талассемия; при генетическом дефекте синтеза α-цепей развивается α-талас-семия. При β-талассемии в крови наряду с HbA1появляется до 15% НЬА2 и резко повышается содержание HbF – до 15–60%. Болезнь характеризуется гиперплазией и разрушением костного мозга, поражением печени, селезенки, деформациейчерепа и сопровождается тяжелой гемолитической анемией. Эритроциты при талассемии приобретают мишеневидную форму. Механизм изменения формы эритроцитов объяснить пока не удалось.


 

А также другие работы, которые могут Вас заинтересовать

19147. Приближения точечной кинетики. Запаздывающие нейтроны. Время жизни нейтронов в реакторе с учетом запаздывающих нейтронов 148 KB
  Лекция 11. Приближения точечной кинетики. Запаздывающие нейтроны. Время жизни нейтронов в реакторе с учетом запаздывающих нейтронов. Система уравнений точечной кинетики с одной группой запаздывающих нейтронов. Реактивность периоды реактора. Критичность на мгновенных и
19148. Выгорание топлива. Единицы измерения глубины выгорания. Классификация осколков деления 159.5 KB
  Лекция 12. Выгорание топлива. Единицы измерения глубины выгорания. Классификация осколков деления. Отравление и зашлаковывание реактора. Ксеноновая яма. Отравление самарием и неодимом. . Процессы происходящие в топливе во время работы реактора. Уменьшение ядер д
19149. Воспроизводство делящихся материалов. Уравнения выгорания. Расширенное воспроизводство. Оружейный и энергетический плутоний 130 KB
  Лекция 13. Воспроизводство делящихся материалов. Уравнения выгорания. Расширенное воспроизводство. Оружейный и энергетический плутоний. Малые актиноиды. Спонтанное деление. 13.1. Воспроизводство делящихся материалов. На рис. 13.1 приведена схема превращений изотопов т
19150. Радиационные характеристики отработавшего ядерного топлива (ОЯТ). Хранение и транспортировка ОЯТ 221 KB
  Лекция 14. Радиационные характеристики отработавшего ядерного топлива ОЯТ. Хранение и транспортировка ОЯТ. 14.1. Радиационные характеристики отработавшего ядерного топлива ОЯТ К радиационным характеристикам ОЯТ будем относить: активность остаточное энерговыделе
19151. Классификации реакторов АЭС. Особенности легководных, графитовых и тяжеловодных реакторов. Проблемы безопасности АЭС 65.5 KB
  Лекция 15. Классификации реакторов АЭС. Особенности легководных графитовых и тяжеловодных реакторов. Проблемы безопасности АЭС. Перспективные типы реакторов. 15.1. Классификации реакторов АЭС. Рассмотрим три классификации реакторов АЭС: по нейтронному спектру по
19152. ОСНОВНЫЕ ПОНЯТИЯ О ТЕРМОДИНАМИКЕ 73 KB
  ТЕМА 1. Основные понятия о термодинамике 1.1. Роль термодинамики в разработке и исследовании конструкционных материалов ядерных реакторов Высокочистые вещества прецизионные сплавы композиты основные материалы ядерной энергетики. Рафинирование. Термодинамическо...
19153. Внутренняя энергия. Первый закон термодинамики 61 KB
  2.2. Внутренняя энергия. Первый закон термодинамики Понятие энергии. Джоуль и калория. Первый закон термодинамики. Внутренняя энергия. Условность отсчета внутренней энергии. Изохорные процессы. Функции состояния и характеристические функции. Слово €œэнергия€
19154. Основные свойства криогенных жидкостей 175 KB
  ОСНОВЫ КОНСТРУИРОВАНИЯ КРИОГЕННЫХ УСТРОЙСТВ Лекция 1 Основные свойства криогенных жидкостей 1.1. Виды жидких хладагентов Для получения низких температур можно использовать различные криогенные жидкости которые прежде всего характеризуются температурой кипения...
19155. Теплоизоляция и принципы теплового расчета 67.5 KB
  ОСНОВЫ КОНСТРУИРОВАНИЯ КРИОГЕННЫХ УСТРОЙСТВ Лекция 2 Теплоизоляция и принципы теплового расчета Изза малой величины теплоты парообразования жидких хладагентов особенно жидкого гелия вопросы теплоизоляции рабочего объема играют ключевую роль при разработке р