81575

Особенности энергетического обмена в мышцах. Креатинфосфат

Доклад

Биология и генетика

Принято считать что процессом непосредственно связанным с работающим механизмом поперечнополосатого мышечного волокна является распад АТФ с образованием АДФ и неорганического фосфата. Возникает вопрос: каким образом мышечная клетка может обеспечить свой сократительный аппарат достаточным количеством энергии в форме АТФ т. каким образом в процессе мышечной деятельности происходит непрерывный ресинтез этого соединения Прежде всего ресинтез АТФ обеспечивается трансфосфорилированием АДФ с креатинфосфатом. Данная реакция...

Русский

2015-02-20

126.43 KB

11 чел.

Особенности энергетического обмена в мышцах. Креатинфосфат.

Принято считать, что процессом, непосредственно связанным с работающим механизмом поперечно-полосатого мышечного волокна, является распад АТФ с образованием АДФ и неорганического фосфата. Возникает вопрос: каким образом мышечная клетка может обеспечить свой сократительный аппарат достаточным количеством энергии в форме АТФ, т.е. каким образом в процессе мышечной деятельности происходит непрерывный ресинтез этого соединения? Прежде всего ресинтез АТФ обеспечивается трансфосфорилированием АДФ с креатинфосфатом. Данная реакция катализируетсяферментом креатинкиназой:

Креатинкиназный путь ресинтеза АТФ является чрезвычайно быстрым и максимально эффективным (за счет каждой молекулыкреатинфосфата образуется молекула АТФ). Именно поэтому долгое время не удавалось установить уменьшение концентрации АТФ и соответственно повышение концентрации АДФ даже при достаточно продолжительном тетанусе. Применив специфический ингибиторкреатинкиназы (1-фтор-2,4-динитро-фенол), а также с помощью агентов, препятствующих окислительному фосфорилированию АДФ вАТФ, Т. Кейн и соавт. (1962) смогли продемонстрировать прямой распад АТФ с одновременным приростом неорганического фосфата иАДФ при одиночном сокращении изолированной мышцы лягушки. Некоторое количество АТФ может ресинтезироваться в ходе аденилаткиназной (миокиназной) реакции:

Запасы креатинфосфата в мышце невелики, а доступность энергии креатинфосфата имеет ценность для работающей мышцы только в том случае, если расход его постоянно возмещается синтезом АТФ в процессе метаболизма. Для любой ткани, в том числе мышечной, известны два фундаментальных биохимических процесса, в ходе которых регенерируются богатые энергией фосфорные соединения. Один из этих процессов – гликолиз, другой – окислительное фосфорилирование. Наиболее важным и эффективным из них является последний. При достаточном снабжении кислородом мышца, несмотря на анаэробный механизм сокращения, в конечном итоге работает за счет энергии, образующейся при окислениицикле Кребса) как продуктов распада углеводов, так и ряда других субстратовтканевого дыхания, в частности жирных кислот, а также ацетата и ацетоацетата. В последнее время появились данные, доказывающие, что креатинфос-фат в мышечной ткани (в частности, в сердечной мышце) способен выполнять не только роль как бы депо легкомобилизуемых макроэргических фосфатных групп, но также роль транспортной формы макроэргических фосфатных связей, образующихся в процессе тканевого дыхания и связанного с ним окислительного фосфорилирования. Предложена схема переноса энергии из митохондрий в цитоплазму клетки миокарда. АТФ, синтезированный в матриксе митохондрий, переносится через внутреннюю мембрану с участием специфической АТФ–АДФ-транслоказы на активный центр митохондриального изофермента креатинкиназы, который расположен на внешней стороне внутреннеймембраны; в межмембранном пространстве (в присутствии ионов Mg2+) при наличии в среде креатина образуется равновесный тройной фермент-субстратный комплекс креатин–креатинкиназа–АТФ–Mg2+, который затем распадается с образованиемкреатинфосфата и АДФ–Mg2+. Креатинфосфат диффундирует в цитоплазму, где используется в миофибриллярной креатинкиназнойреакции для рефосфорилирования АДФ, образовавшегося при сокращении. Высказываются предположения, что не только в сердечной мышце, но и в скелетной мускулатуре имеется подобный путь транспорта энергии из митохондрий в миофибриллы. При работе умеренной интенсивности мышца может покрывать свои энергетические затраты за счет аэробного метаболизма. Однако при больших нагрузках, когда возможность снабжения кислородом отстает от потребности в нем, мышца вынуждена использовать гликолитический путь снабжения энергией. При интенсивной мышечной работе скорость расщепления гликогена или глюкозы с образованием молочной кислоты увеличивается в сотни раз. Соответственно содержание молочной кислоты в мышечной ткани может повышаться до 1,0–1,2 г/кг и более. С током крови значительное количество молочной кислоты поступает в печень, где ресинтезируется в глюкозу и гликоген (глюконеогенез) за счет энергии окислительных процессов . Перечисленные механизмы ресин-тезаАТФ при мышечной деятельности включаются в строго определенной последовательности. Наиболее экстренным является креатинкиназный механизм, и лишь примерно через 20 с максимально интенсивной работы начинается усиление гликолиза, интенсивность которого достигает максимума через 40–80 с. При более длительной, а следовательно, и менее интенсивной работе все большее значение приобретает аэробный путь ресинтеза АТФ. Содержание АТФ и креатинфосфата в сердечной мышце ниже, чем в скелетной мускулатуре, а расход АТФ велик. В связи с этим ресинтез АТФ в миокарде должен происходить намного интенсивнее, чем в скелетной мускулатуре. Для сердечной мышцы теплокровных животных и человека основным путем образования богатых энергией фосфорных соединений является путь окислительного фосфорилирования, связанный с поглощением кислорода. Регенерация АТФ в процессе анаэробного расщепленияуглеводов (гликолиз) в сердце человека практического значения не имеет. Именно поэтому сердечная мышца очень чувствительна к недостатку кислорода. Характерной особенностью обмена веществ в сердечной мышце по сравнению со скелетной является также то, что аэробное окисление веществ неуглеводной природы при работе сердечной мышцы имеет большее значение, чем при сокращении скелетной мышцы. Только 30–35% кислорода, поглощаемого сердцем в норме, расходуется на окисление углеводов и продуктов их превращения. Главным субстратом дыхания в сердечной мышце являются жирные кислоты. Окисление неуглеводных веществобеспечивает около 65–70% потребности миокарда в энергии. Из свободных жирных кислот в сердечной мышце особенно легко подвергается окислению олеиновая кислота.


 

А также другие работы, которые могут Вас заинтересовать

30315. Предложение как синтаксическая единица. Его признаки и свойства. Понятие структурной схемы и парадигмы предложения 35.5 KB
  Понятие структурной схемы и парадигмы предложения. Универсальный признак предложения предикативность вслед за Шахматовым и Пешковским сформулировал Виноградов соотнесенность содержания предложения с действительностью. Существует широкое предикативность присуща всем предложениям и узкое понимание только те предложения в которых есть предикат предикативности. Универсальное свойство предложения позволяющее совокупности словоформ стать предложением интонационная оформленность.
30316. Понятие семантической структуры предложения, ее соотношение с формальной структурой 46 KB
  Эти отношения выражает предикат который организует положение дел и задаёт определённые места для предметов участников ситуации актантов определяя их количество и роли. Актанты это предметные распространители предиката актант субъектного типа актант объектного типа орудийный актант и т. В структуре пропозиции имеются также непредметные распространители предиката сирконстанты локатив темпоратив и др. Таким образом каждая пропозиция являясь моделью ситуации имеет свою структуру вершиной которой выступает предикат.
30317. Основы описания простого предложения. Типы предложений 29 KB
  Основы описания простого предложения. коммуникативную задачу выражающуюся интонацией и порядком слов Актуальное членение предложения. структура; порядок слов и интонация; члены предложения как компоненты предикативной основы П. По характеру выражаемого в них отношения к действительности различаются предложения реальной и ирреальной модальности с разнообразными оттенками модальных значений: реальности и ирреальности предположения сомнения уверенности возможности невозможности и т.
30318. Современный русский литературный язык как предмет научного изучения. Русский язык в современном мире 45.5 KB
  Русский язык в современном мире. Русский язык в современном мире. Языки имеют национальные границы каждый из языков своеобразен.
30319. Понятие о стилях ЛЯ. Принципы их классификации 198.5 KB
  ЛИТЕРАТУРНЫЙ ЯЗЫК наддиалектная подсистема форма существования национального языка которая характеризуется такими чертами как нормативность кодифицированность полифункциональность стилистическая дифференцированность высокий социальный престиж в среде носителей данного национального языка. Литературный язык является основным средством обслуживающим коммуникативные потребности общества; он противопоставлен некодифицированным подсистемам национального языка территориальным диалектам городским койне городскому просторечию...
30320. Проблема нормативности литературной речи. Классификация речевых ошибок 53 KB
  Нормы: 1. Ожегов дал такое определение языковой нормы: Норма это совокупность наиболее пригодных для обслуживания общества средств языка складывающихся как результат отбора языковых элементов из числа сосуществующих наличествующих образуемых вновь или извлекаемых из пассивного запаса прошлого в процессе социальной в широком смысле оценки этих элементов. Искусственные нормы устанавливаются в результате нормотворческой деятельности языковедов путем подготовки и издания авторитетных словарей и справочников и даже законодательных актов ...
30323. Физико-химические основы технологических процессов 59.5 KB
  Физикохимические основы технологических процессов Этилбензол на нефтехимических предприятиях Украины и в ведущих капиталистических странах получают по каталитической реакции алкилирования бензола этиленом: С6Н6 С2Н4→С6Н5СН2СН3 2 Реакция алкилирования бензола этиленом можно классифицировать как: по зоне протекания химической реакции гетерогенная ; по использованию в ходе реакции катализатора...