81580

Медиаторы: ацетилхолин, катехоламины, серотонин, γ-аминомаслянная кислота, глутаминовая кислота, глицин, гистамин

Доклад

Биология и генетика

γАминомасляная кислота выполняет в организме функцию ингибирующего медиатора центральной нервной системы. Действие ГАМК в ЦНС осуществляется путём её взаимодействия со специфическими ГАМКергическими рецепторам Глутаминовая кислота является нейромедиаторной аминокислотой одним из важных представителей класса возбуждающих аминокислот. Эндогенные лиганды глутаминатных рецепторов глутаминовая кислота и аспарагиновая кислота.

Русский

2015-02-20

107.74 KB

0 чел.

Медиаторы: ацетилхолин, катехоламины, серотонин, γ-аминомаслянная кислота, глутаминовая кислота, глицин, гистамин.

Ацетилхолин является химическим передатчиком (медиатором) нервного возбуждения; окончания нервных волокон, для которых он служит медиатором, называются холинергическими, а рецепторы, взаимодействующие с ним, называют холинорецепторами. Холинорецептор (по современной зарубежной терминологии — «холиноцептор») является сложной белковой макромолекулой (нуклеопротеидом), локализованной на внешней стороне постсинаптической мембраны. При этом холинорецептор постганглионарных холинергических нервов (сердца, гладких мышц, желез) обозначают как м-холинорецепторы (мускариночувствительные), а расположенные в области ганглионарных синапсов и в соматических нервномышечных синапсах — как н-холинорецепторы (никотиночувствительнные). Такое деление связано с особенностями реакций, возникающих при взаимодействии ацетилхолина с этими биохимическими системами: мускариноподобных в первом случае и никотиноподобных — во втором; м- и н-холинорецепторы находятся также в разных отделах ЦНС.

Катехоламины — физиологически активные вещества, выполняющие роль химических посредников и «управляющих» молекул (медиаторов и нейрогормонов) в межклеточных взаимодействиях у животных и человека, в том числе в их мозге; производные пирокатехина. К катехоламинам относятся, в частности, такие нейромедиаторы, как адреналин, норадреналин, дофамин (допамин).

γ-Аминомасляная кислота выполняет в организме функцию ингибирующего медиатора центральной нервной системы. При выбросе ГАМК в синаптическую щель происходит активация ионных каналов ГАМКA- и ГАМКC-рецепторов, приводящая к ингибированию нервного импульса. становлено, что ГАМК является основным нейромедиатором, участвующим в процессах центрального торможения.

Под влиянием ГАМК активируются также энергетические процессы мозга, повышается дыхательная активность тканей, улучшается утилизация мозгом глюкозы, улучшается кровоснабжение.

Действие ГАМК в ЦНС осуществляется путём её взаимодействия со специфическими ГАМКергическими рецепторам

Глутаминовая кислота является нейромедиаторной аминокислотой, одним из важных представителей класса «возбуждающих аминокислот». Связывание аниона глутамината со специфическими рецепторами нейронов приводит к возбуждению нейронов. Существуют ионотропные и метаботропные (mGLuR 1-8) глутаминатные рецепторы.

Ионотропными рецепторами являются NMDA-рецепторы, AMPA-рецепторы и каинатные рецепторы.

Эндогенные лиганды глутаминатных рецепторов — глутаминовая кислота и аспарагиновая кислота. Для активации НМДА рецепторов также необходим глицин. Блокаторами NMDA-рецепторов являются PCP, кетамин, и другие вещества. AMPA-рецепторы также блокируются CNQX,NBQX. Каинова кислота является активатором каинатных рецепторов.

Глицин является нейромедиаторной аминокислотой. Рецепторы к глицину имеются во многих участках головного мозга и спинного мозга и оказывают «тормозное» воздействие на нейроны, уменьшают выделение из нейронов «возбуждающих» аминокислот, таких, как глутаминовая кислота, и повышают выделение ГАМК.

Серотонин играет роль нейромедиатора в ЦНС. Серотонинергические нейроны группируются в стволе мозга: в варолиевом мосту и ядрах шва. От моста идут нисходящие проекции в спинной мозг, нейроны ядер шва дают восходящие проекции к мозжечку, лимбической системе, базальным ганглиям, коре. При этом нейроны дорсального и медиального ядер шва дают аксоны, различающиеся морфологически, электрофизиологически, мишенями иннервации и чувствительностью к некоторым нейротоксическим агентам, например, экстази.


 

А также другие работы, которые могут Вас заинтересовать

36490. Розподіли Гаусса і Пуассона як частинні випадки біноміального розподілу 210.63 KB
  Для кожного тіла можна записати термічне рівняння стану та його внутрішню енергію як функцію параметрів які визначають його стан наприклад . Як називається це рівняння Це калоричне рівняння. Обидва ці рівняння не можуть бути отримані методами формальної термодинаміки. Якщо відомо відоме термічне рівняння стану то теорема Карно дозволяє в загальному вигляді розвязати питання залежності внутрішньої енергії від обєму.
36491. Середня довжина вільного пробігу молекул, її залежність від тиску і температури 242.26 KB
  Середня довжина вільного пробігу молекул її залежність від тиску і температури. Розглянемо молекулу яка рухається із деякою середньою швидкістю і при зіткненнях не змінює швидкості. Будемо вважати що рухається тільки одна молекула за якою ми спостерігаємо а решта нерухомі. Виберемо проміжок часу рівний одній секунді тобто будемо розглядати шлях молекули за одиницю часу.
36492. Розподіл середньої кінетичної енергії за ступенями вільності для обертального руху 189.71 KB
  Кількість молекул всі вони незалежні. Кожна молекула характеризується у просторі кругових частот величинами . Імовірність потрапити молекулам у елементарний обєм має вигляд . Знайдемо середню кінетичну енергію обертального руху виділеної молекули що припадає на один ступінь вільності при обертанні навколо осі навіщо нам чіплятись до осі вісь нічим не гірша.
36493. Термічна ефузія 238 KB
  Кількість зіткнень з нею за одиницю часу становить за законом косинусу . Повна кількість молекул у такому обємі становить . Цей простір буде також необмежений тому ми можемо вважати кількість комірок у ньому нескінченною. Скористаємось формулою Больцмана де у нашому випадку у знаменнику немає обмеження оскільки кількість комірок є нескінченною .
36494. Основи вакуумної техніки 120.78 KB
  Мірою кількості газу що переміщується у системі є величина яка згідно із рівнянням стану ідеального газу може бути записана як . Вакуумники люди консервативні тому міра газу визначається у несистемних одиницях : лмм рт. або лтор а всі розрахунки кількості газу ми будемо вести на одиницю часу. Швидкістю відкачки насосу будемо називати такий обєм газу який входить за одиницю часу до насосу і виміряний при тискові який має місце біля його входу .
36495. Термічна дифузія 233.6 KB
  Перший доданок являє собою потік взаємної дифузії молекул 1 газу а другий термодифузійний потік. На рисунку вихідні сталі відносні концентрації змінились і набули вигляду концентрація молекул першого газу біля першої пластини; концентрація молекул першого газу біля другої пластини; концентрація молекул другого газу біля першої пластини; концентрація молекул другого газу біля другої пластини. В результаті такої конвекції нагріта частина газу рухається відносно холодної створюючи провиток. Очевидно що температура газу поблизу проволоки...
36496. Взаємна дифузія 175.31 KB
  Згідно із основним рівнянням переносу можна записати ; . Згідно із рівнянням Фіка яке справедливо і для суміші газів коефіцієнт дифузії першого газу у суміші двох газів . Рівняння політропного процесу робота при цьому процесі Ізотермічний і адіабатний процеси це процеси ідеалізовані. Запишемо для нього рівняння.
36497. Квантовий підхід Дебая-Борна 315.41 KB
  Хоча швидкості молекул змінюються у стані термодинамічної рівноваги властивості газу залишаються сталими. Насправді закон про статистичний закон розподілу молекул за швидкостями можна сформулювати так : скільки молекул газу або яка їх частка мають швидкості значення яких лежать у деякому інтервалі наближеному до заданої швидкості Зрідження газів і методи одержання низьких температур. Рівняння ВандерВаальса показує що будь який газ може бути переведеним в рідкий стан але необхідною умовою для цього є попереднє охолодження газу до...
36498. Рівняння Ван-дер-Ваальса 238.96 KB
  Дія відштовхування зводиться до того що молекула не допускає проникнення у свій обєм інших молекул. Отже сили відштовхування враховуються через деякий ефективний обєм молекул. Якщо газ у нас не дуже стиснутий то взаємодії між молекулами будуть лише парні участь третьої четвертої та інших молекул малоймовірна. Припустимо що у посудині із обємом знаходяться лише дві однакові молекули.