81784

Формирование опытной науки в новоевропейской культуре

Доклад

Логика и философия

Изменяется роль человека в мире. Происходит постепенная смена мировоззренческой ориентации: для человека значимым становится посюсторонний мир автономным универсальным и самодостаточным становится индивид. Отсюда и характерное для эпохи Возрождения стремление познать принципы функционирования механизмов приборов устройств и самого человека.

Русский

2015-02-22

31.1 KB

20 чел.

Формирование опытной науки в новоевропейской культуре

Формирование опытной науки связано с изменяющимися представлениями человека о его взаимосвязи с природой. Человек должен представить себя активным началом в исследовании природы, и это связано с зарождением идеи экспериментального исследования.

В XIII—XV вв. усилился интерес к естественнонаучным идеям и исследованиям. Значительную роль в развитии и распространении естествознания сыграла Оксфордская школа, представлявшая объединение философов и ученых и существовавшая при Оксфордском университете. Главная роль в становлении школы принадлежала францисканцу Роберту Гроссетесту (Большеголовому, 1175—1253), который был одним из первьгх переводчиков естественнонаучных произведений Аристотеля. Но он более интересен как автор собственных естественнонаучных трактатов, среди которых важнейший трактат «О свете или о начале форм».

Научные интересы Гроссетеста концентрировались вокруг вопросов .оптики, математики (собственно, геометрии), астрономии. В своих работах он высказывает мысли о том, что изучение явлений начинается с опыта, посредством их анализа (resolutio) устанавливается некоторое общее положение, рассматриваемое как гипотеза. Отправляясь от нее, уже дедуктивно (compositio) выводятся следствия, опытная проверка которых устанавливает их истинность или ложность. Для проверки гипотез мыслитель использует методы фальсификации и верификации.

В построении объяснительных схем и в выборе между ними Грос-сетест руководствовался двумя общими формальными «метафизическими» принципами. Один из них — принцип единообразия (uniformity) природы он использовал в качестве принципа самого физического объяснения. Второй — принцип экономии (lex parsimoniae), заимство ванный у Аристотеля: если одна вещь более доказана из многих предпосылок, а другая вещь — из немногих предпосылок, одинаково ясных, то лучшая из них та, которая доказана из немногих, потому что она быстрее дает нам знание.

Гроссетест в попытке выработать общую методологию естественнонаучного исследования, исходя из идей Аристотеля, изменяет понятие причины и механизм причинного действия. Четыре аристотелевские причины он заменяет двухполюсной причинно-следственной цепочкой. Фундаментальность этой схемы для всего последующего развития физического мышления непреходяща.

Необходимо напомнить, что обычной для множества средневековых трактатов была мысль о том, что только в математике вещи, известные нам, и вещи, существующие по природе, тождественны. Исходя из этого, модель математического объяснения становится моделью идеального знания, и даже теологическую аргументацию мыслители этой поры пытаются сформулировать согласно математико-де-дуктивному методу.

Основные достижения Оксфордской школы связаны с научной деятельностью членов Мертонского колледжа при Оксфордском университете, Важное место среди них занимает ФомаБродвардин, который пытался выработать математический способ описания движений тел посредством придания физическим процессам количественных показателей. А его ученики — Ричард Киллингтон, Ричард Суиссет (Суайнехед), Уильям Хейтесбери и Джон Дамблтон, так называемые «калькуляторы», стремясь объединить физику Аристотеля и учение о пропорциях Евклида, пытались создать единую систему «математической физики», основанной на возможности арифметико-алгебраи-ческого выражения качества. В работах калькуляторов формировались такие понятия математики, как переменная величина, логарифм, дробный показатель, бесконечный ряд.

Реализация идей опытной науки еще оставалась вопросом будущего. В частности, проведение экспериментов предполагало создание соответствующей экспериментальной техники, устройств, приборов и т. д. Огромные материальные ресурсы, которые требовались для развития техники и инженерного искусства, реально появились лишь в эпоху Возрождения. Создание новой техники, в свою очередь, предполагало гораздо более широкое применение математических расчетов, использование прикладных математических моделей, которое ста мулировало развитие математических исследований. Но идея о том, что законы природы могут быть описаны языком математики и проверены экспериментом, иключительно медленно пробивала себе дорогу на протяжении всей эпохи Возрождения.

Изменяется роль человека в мире. Зарождается новый тип мышления. Происходит постепенная смена мировоззренческой ориентации: для человека значимым становится посюсторонний мир, автономным, универсальным и самодостаточным становится индивид. Философия, наука, искусство приобретают самостоятельность, автономность по отношению к церкви и религии. В протестантизме происходит разделение знания и веры, ограничение сферы применения человеческого разума миром «земных вещей», под которыми понимается эмпирически ориентированное познание природы. В этих условиях создаются предпосылки для возникновения экспериментально-математического естествознания.

Среди тех, кто подготавливал рождение науки, был Николай Кузанский (1401—1464). В своих философских воззрениях на мир он вводит методологический принцип совпадения противоположностей — единого и бесконечного, максимума и минимума, из которого следует тезис об относительности любой точки отсчета. Кузанский делает заключение о предположительном характере всякого человеческого знания. Поэтому он уравнивает в правах и науку, основанную на опыте, и науку, основанную на доказательствах. Большое внимание философ придает измерительным процедурам.

Применяя принцип совпадения противоположностей к астрономии, Кузанский приходит к выводу, что Земля не является центром Вселенной, а такое же небесное тело, как и Солнце и Луна, что подготавливало переворот в астрономии, который в дальнейшем совершил Коперник.

Человек становится творцом, поднимаясь почти на один уровень с Богом, ведь он наделен свободой воли и должен сам решать свою судьбу, способен творить, стать мастером, которому по силам любая задача. Отсюда и характерное для эпохи Возрождения стремление познать принципы функционирования механизмов, приборов, устройств и самого человека. В этой связи особый интерес представляют попытки Леонардо да Винчи (1452—1519) применить в анатомии знания из прикладной механики и найти соответствие между функционированием органов человека и животных и функционированием известных ему технических устройств, механизмов.

Леонардо да Винчи считал, что «опыт никогда не ошибается, ошибаются только суждения ваши», и что для получения в науках достоверных выводов следует применять математику, в которую он обычно включал и механику. Механика же мыслилась им еще не как теоретическая наука, какой она станет во времена Галилея и Ньютона, а как чисто прикладное искусство конструирования различных машин и устройств. Леонардо да Винчи подошел к необходимости органического соединения эксперимента и его математического осмысления, которое и составляет суть того, что в дальнейшем назовут современным естествознанием, наукой в собственном смысле слова.

Как идейно-культурное движение сформировался гуманизм. Возникают предпосылки для создания новых научных направлений в гуманитарной сфере, таких как политология (на основании трудов Макиавелли), утопические концепции коммунизма, меркантилизм (первая экономическая школа).


 

А также другие работы, которые могут Вас заинтересовать

5157. Будущее железнодорожных вокзалов 156.5 KB
  Будущее железнодорожных вокзалов. Железные дороги и вокзалы оказывают заметное влияние на развитие городов, вносят изменения в их структуру. В свою очередь, город предъявляет все более новые требования к решениям транспортных узлов и комплексам вокз...
5158. Расчет и выбор посадок подшипников качения 67 KB
  ЗАДАНО: Условное обозначение подшипника 1216 класс точности 0 нагрузка радиальная корпус вращается: характер нагрузки - (тяжелый). 1. Расшифровать условное обозначение подшипника: 1216 — подшипник шариковый радиальный сферический двухря...
5159. Определение гранулометрического (зернового) состава грунта 61 KB
  Определение гранулометрического (зернового) состава грунта. Цель работы: определить вид и степень неоднородности грунта. Приборы и оборудование: набор сит (с поддоном) сита с размером отверстий 107 53 2 1 0,5 0,25 мм весы лабораторные по ГО...
5160. Определение физических характеристик грунта 124 KB
  Определение физических характеристик грунта Цель работы: определить основные и производные физические характеристики грунта. Приборы и оборудование: весы лабораторные по ГОСТ 19491 пикнометры по ГОСТ 22524-77 шкаф сушильный шпатель режущее коль...
5161. Определение консистенции связного грунта 40.5 KB
  Определение консистенции связного грунта. Цель работы: определить вид и состояние глинистого грунта. Приборы и оборудование, весы лабораторные по ГОСТ 19491 ступка фарфоровая по ГОСТ 9147-73 пестик по ГОСТ 9147-73 с резиновым наконечником чашка ф...
5162. Компрессионные испытания грунтов 161.5 KB
  Компрессионные испытания грунтов. Цель работы: освоить методику испытания грунта методом компрессионного сжатия для определения коэффициента сжимаемости, модуля деформации Е, структурной прочности на сжатие . Приборы и оборудование: компрессионный...
5163. Определение прочностных характеристик грунта 114 KB
  Определение прочностных характеристик грунта Цель работы:освоить методику испытания грунта методом одноплоскостного среза для определения прочностных характеристик грунтов (сопротивления грунта срезу угла внутреннего трения и удельного сцепле...
5164. Дорожная строительная техника. Погрузчики 342.5 KB
  Погрузчики Погрузчики – это современные высокопроизводительные машины, предназначенные для выполнения землеройных работ, погрузки и переработки разнородных материалов: различных видов грунтов и горных пород, угля, песка, щебня, металлической ст...
5165. Кривые линии и поверхности 325 KB
  Линии занимают особое положение в начертательной геометрии. Используя линии, можно создать наглядные модели многих процессов и проследить их течение во времени. Линии позволяют установить и исследовать функциональную зависимость между разл...