82368

Расчёт и проектирование двуступенчатого редуктора

Курсовая

Производство и промышленные технологии

Кинематическая схема привода. Определение мощности на ведущем валу и выбор электродвигателя. Определение общего передаточного числа. Основные параметры передачи. Выбор материалов. Допускаемые напряжения. Определение межосевого расстояния и расчёт тихоходной ступени. Геометрические параметры передачи.

Русский

2015-02-27

53.88 KB

1 чел.

Федеральное агентство морского и речного транспорта

Федеральное государственное образовательное учреждение

Высшего профессионального образования

Волжская государственная академия водного транспорта

Расчёт и проектирование двуступенчатого редуктора

Расчётно-пояснительная записка к курсовой работе по ДМ

Выполнил:

Студент группы 322-ДСМ                                                           Глазов М.Ю

Проверила:                                                                                          Сидорова.О.В

Нижний Новгород

2014 год

Содержание

  1.  Кинематическая схема привода.
  2.  Определение мощности на ведущем валу и выбор электродвигателя.
  3.  Определение общего передаточного числа.
  4.  Основные параметры передачи.
  5.  Выбор материалов.
  6.  Допускаемые напряжения.
  7.  Определение межосевого расстояния и расчёт тихоходной ступени.
  8.  Геометрические параметры передачи.
  9.  Расчёт передачи на выносливость зубьев при изгибе.
  10.   Определение сил, действующих в зацеплении.
  11.   Расчёт быстроходной ступени.
  12.   Расчёт валов.
  13.   Подшипники.
  14.   Шпонки.
  15.   Размеры элементов корпуса редуктора.

Список используемой литературы.  

14 техническое задание вариант 6

Исходные данные к расчетам:0

Q=50

=25м

D=500мм

S=400мм

=30 об/мин

W=2.5

1.Определение общего кпд механизма.

=·=0,96·0,96=0,92

  1.  Определение мощности на ведущем валу и выбор электродвигателя.

= =8.4375 1/0.92 = 9.17 кВт.

=0.0027·(·w±Н) = 0.0027·50(25·2.5±0)=8.4375

расчётная мощность двигателя.

В соответствии с ГОСТ 19 523 – 81 выбираем асинхронный трёхфазный электродвигатель типа АИР132М4 – 11 кВт, с частотой вращения   = 1447 об/мин.

 

3 Определение общего передаточного числа и разбивка его по ступеням.

Um =  = 1447/30 = 48.2, где  =   = 30

= 1.25 = 1.25 = 8,7

Принимаем  = 9  в соответствии с ГОСТ 2144-76.

=  = 5,6.

Принимаем  = 5,6  в соответствии с ГОСТ 2144-76.

                  

4  Основные параметры передачи.

Вал

Р, кВт

n, об/мин

Т, Нм

Ведущий (электродвигатель)

= 11

= 1447

= 72,5

Промежуточный

= 10,56

=161

= 657,5

Ведомый

= 10,13

= 17,8

= 5434

=  = 11 0.95 = 10,56 кВт.

=  =10,56 0.96 = 10,13 кВт.

=  = 1447/9 = 160,7об/мин.

=  = 17.8об/мин.

= 9550  = 72,5Нм.

= 9550  = 627,5Нм.

= 9550  = 5434Нм.

  1.  Выбор материалов.

Шестерня

Марка стали

Термическое улучшение

Твёрдость

Прочность, МПа

45

Нормализация

<222

-

730

390

-

Колесо

Марка стали

Твёрдость

Прочность, МПа

45

<222

730

390

-

6Допускаемые напряжения

6,1 Допускаемые напряжения на контактную прочность.

Усреднённое значение допускаемого напряжения для шестерни и колеса

= 0.45( ) = 0.45(445.5 + 445.5 ) =401 МПа.

Для шестерни:

=  = 490 1/1.1 = 445.5 МПа.

= 1.1 – коэффициент безопасности.

= 1.0 – коэффициент долговечности.

= 2 = 2 210  70 = 490 МПа.

Для колеса:

=  = 490 1/1.1 = 445.5 МПа.

= 2 = 2 210 + 70 = 490 МПа.

6,2 Допускаемые напряжения на изгибаемую прочность.

=  = 226,3 Мпа, где

= 1,75 – коэффициент безопасности.

= 1 – коэффициент долговечности.

= 1.8 = 1.8 220 = 396 МПа.

  1.  Определение межосевого расстояния.

Из условия обеспечения контактной прочности в зубьях колеса определяем межосевое расстояние тихоходной ступени по формуле:

 = , где

– вспомогательный размерный коэффициент,  = 430(для косозубой передачи).

– передаточное отношение передачи.

– расчётный крутящий момент на ведомом валу.

– коэффициент неравномерности распределения нагрузки по ширине венца ,.

= 0.4 (для косозубой передачи).

=  = 430 6,6 0.144 = 408.6мм.

В соответствии с ГОСТ 2185-66 принимаем  = 400 мм.

8 Геометрические параметры передачи.

8,1 Модуль зацепления.

= 0.4 =6,4мм.

В соответствии со стандартом СЭВ 310-76 принимаем  = 6 мм.

8.2 Суммарное число зубьев.

= 2 = 2 400 0.9848/6 =131.3≈132

Принимаем  =arccos(132·6/2·400)=arccos (0.99)=8.1.

Принимаем  = 132.

=  = 132/5,6 + 1 = 20

=  = 132-20 = 112.

= 112/20 = 5,6  - уточнённое значение передаточного отношения передачи.

Диаметр делительных окружностей:

=  = 620/0.99 = 121,2мм.

=  = 6 112/0.99 = 678.8мм.

Диаметр вершин:

=  = 121.2 + 2 6 =133,2мм.

=  = 678.8 + 2 6 =690.8 мм.

Диаметр впадин:

=  = 121.2 – 2.5 6 = 106,2мм.

=  = 678.8 – 2.5 6 = 663,2мм.

= +5;   =  = 0.4 400 = 160 ; = 160 + 5 = 165 - ширина зубчатого венца шестерни и колеса.

Окружная скорость в м/c 

V= πd1n1/6·10^4=3.14·121.2·1447/60000=9,17

9 Расчёт передачи на выносливость зубьев при изгибе.

Для косозубой передачи:

< =  = 4.2 Мпа< 226МПа.

Прочность на изгиб обеспечена.

Крутящий момент на шестерне:

= 0.59 – коэффициент распределения нагрузки между зубьями.

=  = 1.3 – коэффициент распределения нагрузки по ширине венца.

= 1.26 – коэффициент влияния динамической нагрузки.

= 4.09;  = 1 –  = 1 –  = 0.942 – коэффициент наклона зубьев.

==0.59

ἐ==1.67

  1.  Расчет на контактную выносливость

Кэффициент учитывающий влияние динамической нагрузки:

=1.16

bw= 150

  1.  Определение сил, действующих в зацеплении.

Окружная составляющая силы:

= 2 627.5/121.2 = 10,35kН.

Осевая составляющая силы:

= tan = 10,35tan 8,1 = 1,47kН.

Радиальная составляющая силы:

10.35tan 20 = 4,04kН.

= 20 - угол зацепления.

Нормальная составляющая силы:

=  = 11,12 kН.

  1.  Определение межосевого расстояния.

Из условия обеспечения контактной прочности в зубьях колеса определяем межосевое расстояние быстроходной ступени по формуле:

 = , где

– вспомогательный размерный коэффициент,  = 430(для косозубой передачи).

– передаточное отношение передачи.

– расчётный крутящий момент на ведомом валу.

– коэффициент неравномерности распределения нагрузки по ширине венца ,.

= 0.4 (для косозубой передачи).

=  = 430 10 0.05 = 223.6мм.

В соответствии с ГОСТ 2185-66 принимаем  = 225 мм.

13 Геометрические параметры передачи.

13,1 Модуль зацепления.

= 0.4 =3,6.

В соответствии со стандартом СЭВ 310-76 принимаем  = 3,5 мм.

13.2 Суммарное число зубьев.

= 2 = 2 225 0.9848/3,5 =126.6≈127

Принимаем  =arccos(127·3.5/2·225)=arccos (0.99)=8.1.

Принимаем  = 127.

=  = 127/9 + 1 = 12.7≈13

=  = 127-13 = 114.

= 114/13 = 8.77  - уточнённое значение передаточного отношения передачи.

U=·100=2.45%

Диаметр делительных окружностей:

=  = 3.513/0.99 = 45.9мм.

=  = 3.5 114/0.99 = 395мм.

Диаметр вершин:

=  = 45.9 + 2 3.5 =52.9мм.

=  = 395 + 2 3.5 =402 мм.

Диаметр впадин:

=  = 45.9 – 2.5 3.5 = 37.15мм.

=  = 395 – 2.5 3.5 = 386.25мм.

= +5;   =  = 0.4 225 = 90 ; = 90 + 5 = 95 - ширина зубчатого венца шестерни и колеса.

Окружная скорость в м/c 

V= πd1n1/6·10^4=3.14·45.9·1447/60000=3.48

14 Расчёт передачи на выносливость зубьев при изгибе.

Для косозубой передачи:

< =  = 44.9 Мпа< 226МПа.

Прочность на изгиб обеспечена.

Крутящий момент на шестерне:

= 0.62 – коэффициент распределения нагрузки между зубьями.

=  = 1.62 – коэффициент распределения нагрузки по ширине венца.

= 1.047 – коэффициент влияния динамической нагрузки.

= 4.5;  = 1 –  = 1 –  = 0.942 – коэффициент наклона зубьев.

==0.62

ἐ==1.59

  1.  Расчет на контактную выносливость

Кэффициент учитывающий влияние динамической нагрузки:

1+=1.064

bw= 87.5

  1.  Определение сил, действующих в зацеплении.

Окружная составляющая силы:

= 2 72.5/45.9 = 3.15kН.

Осевая составляющая силы:

= tan = 3,15tan 8.1 = 0.44kН.

Радиальная составляющая силы:

3.15tan 20 = 1.23kН.

= 20 - угол зацепления.

Нормальная составляющая силы:

=  = 3.38 kН.

  1.  Расчёт валов.

16.1. Выбор материалов.

50 ГОСТ 1050-60

16.2. Определение длины валов.

Длина ведущего вала :

.

где х = 10 мм,  = 75.

= = 102 мм.

мм.

Длина промежуточного вала:

144.5 мм.

где х = 10 мм,

= мм.

мм.

Длина ведомого вала

= 83.5+10+37.5=131мм

= 98.5 + 144.5 +131 = 374 мм.

Суммарные реакции:

Изгибающие моменты в горизонтальной плоскости:

Изгибающие моменты в вертикальной плоскости:

Суммарный момент:

Диаметр выходного конца вала:

=  =  = 102.8 мм.

Принимаем  = 108 мм.

Диаметр цапф под подшипниками принимаем  = 105 мм.

Диаметр вала под шестернёй увеличиваем на 2-3 мм и принимаем

Нормальные напряжения:

= 797447.2/130670 = 6.1 Мпа.

3.14/32 = 130670

Касательные напряжения для отнулевого цикла равны:

=  = 5434 1000/2 = 10.4 МПа.

= 3.14/16 = 261340.

Эффективные коэффициенты концентрации напряжений для сечения со шпоночной канавкой для стали 45 с переделов прочности менее 700 МПа.

; 1.5.

Масштабные факторы:

= 0.74.

Коэффициенты асимметрии цикла для среднеуглеродистых сталей:

Коэффициент запаса прочности по нормальным напряжениям:

= =  = 20.8 .

Коэффициент запаса прочности по касательным напряжениям:

=   =  = 6.88.

Общий коэффициент запаса прочности:

S = [S]

где S – расчётный коэффициент запаса прочности.

Опорные реакции в горизонтальной плоскости:

=

Опорные реакции в вертикальной плоскости:

.

=  = -979 Н.

.

=  = 1831.4Н.

Суммарные реакции:

=  = 6025 Н.

=  =  = 10042 Н.

Изгибающие моменты в горизонтальной плоскости:

=  = 5945 98.5 =582582.5  H .

=  = 9874.2 131 = 1293494 H .

Изгибающие моменты в вертикальной плоскости:

=  = -979  98.5 = -96431 H .

=  –  = -1831.1 (144.5+131) – 1470 121/2 – 4040144.5 = -8680  H.

=  –  = 979 (98.5 + 144.5) – 440 395/2 + 1230144.5 = 328732 Н мм.

=  = 1831 131 = 239861H .

Суммарный момент:

=  =  = 590775 Н мм.

=  =  = 1334612.9 Н  мм.

В дальнейшем принимаем  наибольшее значение изгибающего момента:

М = 1334612  Н  м.

Диметр вала в месте посадки тихоходной ступени (сечение II):

d ≥  =  = 49.98 мм.

Принимаем d = 56 мм.

Диаметр цапф под подшипниками принимаем   = 55 мм.

Проверка усталостной прочности вала:

Нормальные напряжения:

=1334612.9 /17232 = 77.5 мПа.

= 3.14 /32 = 17232 .

Касательные напряжения для отнулевого цикла:

= 627.5 /2  = 9.1мПа.

= 3.14 /16 = 34444.6 .

Коэффициент запаса прочности по нормальным напряжениям:

=  =  = 1.34

Коэффициент запаса прочности по касательным напряжениям:

=   =  = 7.8.

Общий коэффициент запаса прочности:

S = [S] = 2.5.

Прочность и жёсткость не обеспечены. Увеличиваем диаметр вала до 75 мм и повторяем расчёт:

= 3.14 /32 = 50240.

= 3.14 /16 = 100480.

= 2201229.1/50240 = 44 мПа.

= 2432.5 /2 100480 = 12 мПа.

=  =  = 2.5.

=   =  = 14.52.

S =  [S] = 2.5.

Прочность и жёсткость обеспечены.

Опорные реакции в вертикальной плоскости:

.

=  = 770 Н.

.

=  = 404 Н.

Опорные реакции в горизонтальной плоскости:

==1103.6H

==2046H

Суммарные реакции:

=  = 2186.4 Н.

=  =  = 1174.7Н.

Изгибающие моменты в горизонтальной плоскости:

=  = 2046 131 =268026H.

Изгибающие моменты в вертикальной плоскости:

=  = 770131 = 100870H .

= = - 404  243= - 98172  H.

Суммарный момент:

=  =  =285439 Н м.

Диметр выходного конца вала:

≥  =  =24 мм.

Принимаем = 28 мм.

Диаметр цапф под подшипниками принимаем  = 35 мм.

Диаметр вала под шестернёй увеличиваем на 2-3 мм и принимаем d = 36.

Нормальные напряжения:

= 285439/4578 = 62.3 мПа.

= 3.14 /32 = 4578.

Касательные напряжения для отнулевого цикла:

= 72.5/2 9156 = 3.95 мПа.

= 3.14 /16 = 9156.

Коэффициент запаса прочности по нормальным напряжениям:

=  =  = 2.1.

Коэффициент запаса прочности по касательным напряжениям:

=   =  = 18.1.

Общий коэффициент запаса прочности:

S =  [S] = 2.5.

Прочность и жёсткость обеспечены.

17.Подшипники

Ведущий вал.

В соответствии с ГОСТ 831-75 выбираем подшипники шариковые радикально-упорные однорядные типа 307 с размерами:

d = 35 мм.

33200 H.

18000 H, где

- базовая динамическая радиальная грузоподъёмность.

- базовая динамическая статическая грузоподъёмность.

Требуемая долговечность подшипника (млн.оборотов) связана со сроком его службы:

, где

- частота вращения подшипника, .

- требуемый срок службы подшипника, ч.

Для шариковых радиально-упорных подшипников:

.

Эквивалентная динамическая радиальная нагрузка  для шариковых радиально-упорных подшипников определяется по формуле:

, где

- коэффициент радиальной нагрузки.

– коэффициент вращения, V = 1.

– радиальная нагрузка на подшипник.

- коэффициент осевой нагрузки.

- осевая нагрузка на подшипник.

0.081.

1.25

.

Принимаем Х= 0.56 и Y=1.55.

.

1355.

.

Значение = 15607ч. отвечает требуемой долговечности.

Промежуточный вал.

В соответствии с ГОСТ 831-75 выбираем подшипники шариковые радиально-упорные однорядные типа 311 с размерами:

d = 55 мм.

71500 H.

41500 H.

0.035.

0.147.

Принимаем X=0.56 и Y= 1.71.

 678.4 ч.

Значение = 70358.9 ч. отвечает требуемой долговечности.

Ведомый вал.

В соответствии с ГОСТ – 831-75 выбираем подшипники шариковые радиально-упорные однорядные типа 321 с размерами:  

d = 105 мм.

182000 H.

143000 H.

0.01.

 0.18

Принимаем X= 0.56 и Y= 2.3.

48228ч.

Значение = ч. отвечает требуемой долговечности.

18.Шпонки.

Для диаметра вала d = 28 мм. По ГОСТ 23360-78 выбираем размеры сечений призматических шпонок:

b = 28 мм.

h = 7 мм.

= 4 мм.

.

= lp = 172мм.

– расчётная длина шпонки.

Приняв допускаемое напряжение при смятии шпонки [] = 70 – 100 мПа, проверим её прочность:

=  = 10.5 мПа, что удовлетворительно, так как  [] = 70 – 100 мПа.

Для диаметра вала d = 56 мм. По ГОСТ 23360-78 выбираем размеры сечений призматических шпонок:

b = 16 мм.

h = 10 мм.

= 6 мм.

= lp = = 164 мм.

– расчётная длина шпонки.

Приняв допускаемое напряжение при смятии шпонки [] = 70 – 100 мПа, проверим её прочность:

=  = 34.2 мПа, что удовлетворительно, так как  [] = 70 – 100 мПа.

Для диаметра вала d = 110 мм. По ГОСТ 23360-78 выбираем размеры сечений призматических шпонок:

b = 32 мм.

h = 18 мм.

= 11 мм.

= 7.4 мм.

= lp = 153мм.

– расчётная длина шпонки.

Приняв допускаемое напряжение при смятии шпонки [] = 70 – 100 мПа, проверим её прочность:

=  = 96.5 мПа, что удовлетворительно, так как  [] = 70 – 100 мПа.

  19.Размеры элементов корпуса редуктора.

Толщина стенки основания корпуса, мм:

= 1.8 ≥ .

= 1.8 = 86.5 > 6.

Принимаем  = 16.

Крышки корпуса:

= 0.9  6.

= 0.9  86 = 72 > 6


 

А также другие работы, которые могут Вас заинтересовать

44822. Мова - суспільне явище. Функції мови 22.5 KB
  Можна дати чималу кількість визначень до поняття мова Мова засіб спілкування мислетворення інтелектуального та естетичного освоєння світу. Мислетворча засіб творення і вираження думки. Номінативна засіб називання усіх ознак предметів дій тощо. Пізнавальна засіб пізнання і накопичення досвіду.
44824. Предпринимательство. Субъекты и формы предпринимательской деятельности 38.28 KB
  По назначению готовой продукции: производящая средства производства производящая средства потребления. По особенностям функционирования выделяют: 1активные ОС заняты в процессе воспроизводства продукции здание в цехе станки машины приборы и т.Фондоотдача Отражает объем продукции приходящийся на один рубль основных фондов. Показывает какая величина основных фондов приходится на рубль выпущенной продукции.
44825. Эффективность государственного регулирования в переходной экономике 24 KB
  Эффективность государственного регулирования в переходной экономике Система государственного регулирования в переходной экономике характеризуется двумя определяющими тенденциями. В переходной экономике роль государственного регулирования в целом выше чем в развитом рыночном хозяйстве. Далее в переходной экономике рынок не сразу становится главным регулятором хозяйственной деятельности поэтому государству приходится активно вмешиваться в экономические процессы. В переходной экономике по сравнению с административнокомандной...
44826. Die Berliner Mauer 26 KB
  Gebut wurde die Berliner Muer nfng der 60er Jhre um den Flüchtlingsstrom vom Osten in den Westen zu stoppen. Die DDR steht kurz vor dem us ist wirtschftlich und politisch bnkrott. Die Sttsgrenze wird geöffnet die Vereinigung der beiden deutschen Stten ist nch über 40 Jhren Trennung in Sicht.
44827. Адаптация человека к условиям окружающей среды. Региональные проблемы экологии человека 23.64 KB
  Адаптация человека к условиям окружающей среды. акклиматизация биосоциал адаптация к сложному комплексу условий внешней среды центральное место в котором занимает климатический фактор. Адаптация такого типа как правило сопровождается только кратковременными сдвигами физиологических показателей. 4перекрестная адаптацияадаптация к одному факторунапр к гипоксии повышает резистентность к комплексу др факторовустойчивость к гипоксии перегрузкам к высоким температурам физич нагрузкам.
44828. Федеральный закон Об охране атмосферного воздуха 40 KB
  Мониторинг атмосферы; внедрение малоотходных технологий и производств; разработка и внедрение более совершенных установок по улавливанию утилизации и обезвреживанию вредных отходов и веществ; разработка норм и правил по ограничению воздействия нестационарных источников загрязнения негативно влияющих на воздушную среду. В проектах должен быть обоснован выбор района размещения объекта с учетом ландшафтно-метеорологических условий должны содержаться данные о допустимых уровнях загрязнения атмосферы согласно нормативным. Общая...
44829. Источники загрязнения 27.5 KB
  В сельском хозяйстве следует сократить непроизводительное расходование воды в орошаемом земледелии реконструировать действующие ирригационные системы в целях снижения расхода воды. В коммунальном хозяйстве необходимо повысить технический уровень эксплуатации систем водоснабжения реконструировать их сократив удельный расход воды.
44830. Охрана природных вод от загрязнения 28.5 KB
  Водный кодекс. Цели водопользования: для целей питьевого и хозбыт водоснабжения сброса сточн вод и дренажных вод произва электрич Е водн и воздушн транспорта сплава древесины и иных целей. Виды водопользования: 1 совместное водопользование; 2 обособленное водопользование может осущся на водн объектах находящихся в собстви физ лиц юр лиц в гос или муницип собствти и предоставленных для обеспечения обороны страны и безопасности госва гос или муниципальных нужд обеспечение кот исключает испе водных объектов др физ лицами юр...