83165

ОЦІНКА АДЕКВАТНОСТІ І ТОЧНОСТІ ТРЕНДОВИХ МОДЕЛЕЙ

Курсовая

Математика и математический анализ

Перевірки адекватності Гаусової моделі. Перевірка адекватності моделі. Тому завдання попереднього вивчення і створення математичної моделі обєктів стало однією з центральних задач оптимального керування. Ідентифікація є процесом побудови математичної моделі обєкта адекватній обєктові з точністю до заданого критерію.

Украинкский

2015-03-10

333 KB

1 чел.

ЗМІСТ

ПЕРЕЛІК СКОРОЧЕНЬ……………………………………………………….

5

ВСТУП………………………………………………………………………….

6

1. ОЦІНКА АДЕКВАТНОСТІ І ТОЧНОСТІ ТРЕНДОВИХ МОДЕЛЕЙ

Перевірки адекватності Гаусової моделі……………………………………...

8

1.1 Перевірка випадковості коливань рівнів залишкової послідовності…..

10

1.2 Перевірка нормальності закону розподілу випадкової величини методом rs-критерію…………………………………………………………...

13

1.3. Перевірка рівності математичного очікування…………………………

13

1.4 Перевірка незалежності значень рівнів випадкового компонента……..

14

2 Перевірка адекватності моделі……………………………………………...

16

2.1 Перевірка випадковості коливань рівнів залишкової послідовності…..

17

2.2 Перевірка нормальності закону розподілу випадкової величини методом rs-критерію…………………………………………………………...

20

2.3 Перевірка рівності математичного очікування………………………….

20

2.4 Перевірка незалежності значень рівнів випадкового компонента……..

21

ВИСНОВОК……………………………………………………………………

23

Список використаної літератури…………………………………

25


ПЕРЕЛІК СКОРОЧЕНЬ

КР – курсова робота

ПФЕ – повний факторний експеримент


ВСТУП

Проблеми розробки, впровадження і освоєння нового покоління автоматизації систем управління технологічними процесами, окремими виробництвами та виробничими об'єднаннями стали дуже актуальними. Формулювання і розв'язок таких завдань можливе лише на базі сучасних досягнень прикладної математики і обчислювальної техніки. У зв'язку з тим у теорії та практиці автоматичного керування найважливішою проблемою стало розв'язання проблеми оптимізації параметрів і структур складних динамічних об'єктів. Для переважної більшості з них апріорного математичного опису немає. Такий опис отримати без знання динамічних властивостей об'єктів керування, і неможливо. Тому завдання попереднього вивчення і створення математичної моделі об'єктів стало однією з центральних задач оптимального керування.

Сукупність методів створення математичних моделей об'єктів керування та їх досліджень створило самостійний напрям під назвою" ідентифікація об'єктів управління."

Ідентифікація є процесом побудови математичної моделі об'єкта, адекватній об'єктові з точністю до заданого критерію.

Під ідентифікацією у вузькому смислі слова розуміють оцінювання параметрів математичної моделі при заданій структурі моделі за результатами вхідних і вихідних сигналів. У широкому смислі слова – побудова самої моделі і визначення її параметрів.

Розрізняють наступні види ідентифікації:

- у реальному часі – нормальний режим експлуатації;

- активний експеримент, що дозволяє побудувати більш якісну модель, тобто модель адекватну об'єктові.

Об'єктом ідентифікації називають те, що в результаті обробки змін пізнається і не залежить від методів і засобів самих вимірів.

Основними етапами ідентифікації є:

  •  структурна ідентифікація – визначення структури математичної моделі на основі теоретичних розумінь;
  •  параметрична ідентифікація, що включає в себе проведення експериментів і визначення оцінок параметрів моделі по експериментальним даним;
  •  перевірка адекватності, тобто якості моделі в значенні близькості вихідної моделі й об'єкта при обраному критерії якості.


ОЦІНКА АДЕКВАТНОСТІ І ТОЧНОСТІ ТРЕНДОВИХ МОДЕЛЕЙ

1 Перевірки адекватності Гауссової моделі

Незалежно від виду і способу побудови економіко-математичної моделі питання про можливість її застосування з метою аналізу і прогнозування економічного явища можна бути вирішити тільки після встановлення адекватності, тобто відповідності моделі досліджуваному процесові чи об’єкту. Через те що повної відповідності моделі реальному процесові чи об’єкту бути не може, адекватність – це якоюсь мірою умовне поняття. Під час моделювання мається на увазі адекватність не взагалі, а за властивостями моделі, які вважаються суттєвими для дослідження. Тому трендова модель конкретного часового ряду вважається адекватною, якщо правильно відображає систематичні компоненти часового ряду. Адекватні моделі перевіряються на точність, яка характеризується величиною відхилення розрахункових значень показників згідно з рівнянням регресії від їх реальних величин.

На основі створених трендових моделей економічної динаміки прогнозується розвиток досліджуваного процесу на майбутній проміжок часу. Прогнозування на основі часового ряду економічних показників належить до одновимірних методів прогнозування, які базуються на екстраполяції, тобто на подовженні на майбутнє тенденції, що спостерігалася в минулому. У цьому випадку хід зміни показника пов’язують не з факторами, а з плином часу, що проявляється в утворенні одновимірних часових рядів.

За допомогою експериментальних даних розподілу волокон, отриманих з соломи 1-го року зберігання, отримали моделі для подальшого їх аналізу. З них обрано дві моделі, що найкраще відображають сутність експерименту.


1.1 Перевірка випадковості коливань рівнів залишкової послідовності

Означає перевірку гіпотези про правильність вибору виду тренда. Для дослідження випадковості відхилень від тренда ми маємо у своєму розпорядженні набір різниць.

Характер цих відхилень вивчається за допомогою ряду непараметричних критеріїв. Одним з таких критеріїв є критерій серій, заснований на медіані вибірки. Ряд з величин  розташовують у порядку зростання їхніх значень і знаходять медіану  отриманого варіаційного ряду, тобто серединне значення при непарному n або середню арифметичну із двох серединних значень при n парному. Вертаючись до вихідної послідовності  й порівнюючи значення цієї послідовності з , будемо ставити знак "плюс", якщо значення  перевершує медіану, і знак "мінус", якщо воно менше медіани; у випадку рівності порівнюваних величин відповідне значення  опускається. Таким чином, виходить послідовність, що складається із плюсів і мінусів, загальне число яких не перевершує n. Послідовність підряд, що йдуть плюсів, або мінусів називається серією. Для того щоб послідовність  була випадковою вибіркою, довжина самої довгої серії не повинна бути занадто великий, а загальне число серій - занадто малим.

Значення наведені в таблиці 1.1


Таблиця 1.1

значення

серії

точки звороту

0

-0.35

-

1

0.074

+

2

0.004979

+

min

3

0.473

+

4

0.673

+

max

5

-0.687

-

6

-0.73

-

7

0.16

+

max

8

0.486

+

9

0.477

+

min

10

0.171

+

11

-0.416

-

12

-0.907

-

13

-0.902

-

min

14

-0.955

-

max

15

-0.919

-

16

-0.827

-

17

-0.797

-

18

-0.75

-

19

-0.79

-

max

20

-1.12

-

21

-1.04

-

min

22

-0.95

-

23

-0.78

-


Позначимо довжину самої довгої серії через  , а загальне число серій - через ν. Вибірка зізнається випадкової, якщо виконуються наступні нерівності для 5%-ного рівня значимості:

,
де квадратні дужки, як звичайно, означають цілу частину числа.

=3

3<3.3lg12

3<4.61

8>1/2 (12-6.2 )

8>2.9

Тому що нерівності виконуються модель уважається адекватною.

Іншим критерієм для даної перевірки може служити критерій піків (поворотних крапок). Рівень послідовності  ( уважається максимумом, якщо він більше двох рядом вартих  рівнів, Т.ч. , і мінімумом, якщо він менше обох сусідніх рівнів, тобто . В обох випадках   уважається поворотною крапкою; загальне число поворотних крапок для залишкової послідовності   позначимо через р.

У випадковій вибірці математичне очікування числа крапок повороту р і дисперсія σ2р виражаються формулами:

; .

Критерієм випадковості з 5%-ним рівнем значимості, тобто з довірчою ймовірністю 95%, є виконання нерівності

де квадратні дужки, як і раніше, означають цілу частину числа.

σ2р=1.633

8>3.495

Висновок: За критерієм серій а також за критерієм піків всі нерівності виконуються, отже, трендова модель вважається адекватною.

1.2 Перевірка нормальності закону розподілу випадкової величини методом RS-критерію

RS-критерій чисельно дорівнює відношенню розмаху варіації випадкової величини R до стандартного відхилення S. В нашому випадку

Висновок: отримане значення RS-критерію, в порівнянні з табличними нижньою і верхньою межами (при n=11 нижня границя дорівнює 2,60, а верхня 3,720), потрапляє в інтервал між критичними границями, отже гіпотеза про нормальний розподіл приймається.

1.3 Перевірка рівності математичного очікування

Якщо вона має дискретний рівномірний розподіл, тобто

Тоді її математичне очікування

Висновок: Математичне очікування фактично дорівнює нулю, отже модель можна вважати адекватною .

1.4 Перевірка незалежності значень рівнів випадкового компонента

 Т.ч. перевірка відсутності істотної автокореляції в залишковій послідовності може здійснюватися по ряду критеріїв, найпоширенішим  з яких є d- критерій Дарбина-Уотсона. Розрахункове значення цього критерію визначається по формулі

d=1.412

Розрахункове значення критерію d (або d') рівняється з верхнім d2 і нижнім d1 критичними значеннями статистики Дарбина-Уотсона, фрагмент табличних значень яких для різного числа рівнів ряду п і числа обумовлених параметрів моделі k представлені в таблиці 1.2.

Таблиця 1.2

8

0,76

1,33

0,56

1,78

0,37

2,29

9

0,82

1,32

0,63

1,70

0,46

2,13

10

0,88

1,32

0,70

1,64

0,53

2,02

11

0,93

1,32

0,66

1,60

0,60

1,39

Висновок: отримане значення d-критерія більше верхнього табличного значення d2, тоді гіпотеза про незалежність значень рівнів випадкового компонента, тобто про відсутність в ній автокореляції, приймається.

Висновок про адекватність трендової моделі робиться, якщо всі зазначені вище чотири перевірки властивостей залишкової послідовності дають позитивний результат. Для адекватних моделей має сенс ставити завдання оцінки їхньої точності. Точність моделі характеризується величиною відхилення виходу моделі від реального значення моделюючої змінної (економічного показника). Для показника, представленого тимчасовим рядом, точність визначається як різниця між значенням фактичного рівня тимчасового ряду і його оцінкою, отриманої розрахунковим шляхом з використанням моделі, при цьому як  статистичні показники точності застосовуються наступні:

Середнє квадратичне відхилення:

Середня відносна помилка апроксимації:

Коефіцієнт збіжності:

Коефіцієнт детермінації:

.


2 ПЕРЕВІРКА АДЕКВАТНОСТІ ДРУГОЇ МОДЕЛІ


2.1 Перевірка випадковості коливань рівнів залишкової послідовності

Означає перевірку гіпотези про правильність вибору виду тренда. Для дослідження випадковості відхилень від тренда ми маємо у своєму розпорядженні набір різниць.

Характер цих відхилень вивчається за допомогою ряду непараметричних критеріїв. Одним з таких критеріїв є критерій серій, заснований на медіані вибірки. Ряд з величин  розташовують у порядку зростання їхніх значень і знаходять медіану  отриманого варіаційного ряду, тобто серединне значення при непарному n або середню арифметичну із двох серединних значень при n парному. Вертаючись до вихідної послідовності  й порівнюючи значення цієї послідовності з , будемо ставити знак "плюс", якщо значення  перевершує медіану, і знак "мінус", якщо воно менше медіани; у випадку рівності порівнюваних величин відповідне значення  опускається. Таким чином, виходить послідовність, що складається із плюсів і мінусів, загальне число яких не перевершує n. Послідовність підряд, що йдуть плюсів, або мінусів називається серією. Для того щоб послідовність  була випадковою вибіркою, довжина самої довгої серії не повинна бути занадто великий, а загальне число серій - занадто малим.

Значення наведені в таблиці 2.1.

Таблиця 2.1

значення

серії

точки звороту

0

0.258

+

1

0.484

+

2

-0.111

-

min

3

-0.28

-

4

-0.04

-

max

5

0.003283

+

6

0.814

+

7

-0.084

-

min

8

-1.371

-

9

-1.122

-

min

10

-0.15

-

11

0.495

+

12

0.722

+

13

0.952

+

max

14

0.832

+

15

0.688

+

16

0.585

+

17

0.443

+

18

0.348

+

19

0.191

+

20

-0.237

-

21

-0.238

-

max

22

-0.217

-

23

-0.106

-

Позначимо довжину самої довгої серії через  , а загальне число серій - через ν. Вибірка зізнається випадкової, якщо виконуються наступні нерівності для 5%-ного рівня значимості:

,
де квадратні дужки, як звичайно, означають цілу частину числа.

=3

3<3.3lg12

3<4.61

6>1/2 (12-6.2)

6>2.9

Висновок: тому що нерівності виконуються модель уважається адекватною.

Іншим критерієм для даної перевірки може служити критерій піків (поворотних крапок). Рівень послідовності  ( уважається максимумом, якщо він більше двох рядом вартих  рівнів, Т.ч. , і мінімумом, якщо він менше обох сусідніх рівнів, тобто . В обох випадках   уважається поворотною крапкою; загальне число поворотних крапок для залишкової послідовності   позначимо через р.

У випадковій вибірці математичне очікування числа крапок повороту р і дисперсія σ2р виражаються формулами:

; .

Критерієм випадковості з 5%-ним рівнем значимості, тобто з довірчою ймовірністю 95%, є виконання нерівності

де квадратні дужки, як і раніше, означають цілу частину числа.

σ2р=1.633

6>3.495

Висновок: за критерієм серій а також за критерієм піків всі нерівності виконуються, отже трендова модель вважається адекватною.

2.2 Перевірка нормальності закону розподілу випадкової величини методом RS-критерію

RS-критерій чисельно дорівнює відношенню розмаху варіації випадкової величини R до стандартного відхилення S. В нашому випадку

Висновок: Отримане значення RS-критерію, в порівнянні з табличними нижньою і верхньою межами (при n=11 нижня границя дорівнює 2,60, а верхня 3,720), потрапляє в інтервал між критичними границями, отже гіпотеза про нормальний розподіл приймається.

2.3 Перевірка рівності математичного очікування

Якщо вона має дискретний рівномірний розподіл, тобто

Тоді її математичне очікування

Висновок: Математичне очікування фактично дорівнює нулю, отже модель можна вважати адекватною .

2.4 Перевірка незалежності значень рівнів випадкового компонента

 Т.ч. перевірка відсутності істотної автокореляції в залишковій послідовності може здійснюватися по ряду критеріїв, найпоширенішим  з яких є d- критерій Дарбина-Уотсона. Розрахункове значення цього критерію визначається по формулі

d=0.685

Розрахункове значення критерію d (або d') рівняється з верхнім d2 і нижнім d1 критичними значеннями статистики Дарбина-Уотсона, фрагмент табличних значень яких для різного числа рівнів ряду п і числа обумовлених параметрів моделі k представлені в таблиці 2.2.

Таблиця 2.2

21

1,22

1,42

1,13

1,54

1,03

1,67

0,93

1,81

22

1,24

1,43

1,15

1,54

1,05

1,66

0,96

1,80

23

1,26

1,44

1,17

1,54

1,08

1,66

0,99

1,79

Висновок: отримане значення d-критерія менше нижнього табличного значення d1, тоді гіпотеза відхиляється і модель неадекватна.

Для адекватних моделей має сенс ставити завдання оцінки їхньої точності. Точність моделі характеризується величиною відхилення виходу моделі від реального значення моделюючої змінної (економічного показника). Для показника, представленого тимчасовим рядом, точність визначається як різниця між значенням фактичного рівня тимчасового ряду і його оцінкою, отриманої розрахунковим шляхом з використанням моделі, при цьому як  статистичні показники точності застосовуються наступні:

Середнє квадратичне відхилення:

Середня відносна помилка апроксимації:

Коефіцієнт збіжності:

Коефіцієнт детермінації:

.


ВИСНОВОК

В ході курсової роботи було розглянуто дві моделі (Гаусова модель та квадратна) на адекватність по наступним етапам:

  •  перевірка випадковості коливань рівнів залишкової послідовності;
  •  перевірка нормальності закону розподілу випадкової величини методом rs-критерію;
  •  перевірка рівності математичного очікування;
  •  перевірка незалежності значень рівнів випадкового компонента.
  •  Висновок: За критерієм серій а також за критерієм піків всі нерівності виконуються, отже, трендова модель вважається адекватною.
  •  Висновок: Отримане значення RS-критерію, в порівнянні з табличними нижньою і верхньою межами (при n=11 нижня границя дорівнює 2,60, а верхня 3,720), потрапляє в інтервал між критичними границями, отже гіпотеза про нормальний розподіл приймається.

В результаті,  математичне очікування Гаусової моделі фактично дорівнює нулю, отже модель можна вважати адекватною; отримане значення d-критерія більше верхнього табличного значення d2, тоді гіпотеза про незалежність значень рівнів випадкового компонента, тобто про відсутність в ній автокореляції, приймається; за критерієм серій а також за критерієм піків всі нерівності виконуються, отже трендова модель вважається адекватною;

отримане значення RS-критерію, в порівнянні з табличними нижньою і верхньою межами (при n=11 нижня границя дорівнює 2,60, а верхня 3,720), потрапляє в інтервал між критичними границями, отже гіпотеза про нормальний розподіл приймається.

Гаусова модель повністю адекватна, тому що всі зазначені вище чотири перевірки властивостей залишкової послідовності дають позитивний результат.

Квадратна модель теж була перевірена по всім чотирьом параметрам. В результаті отримали: математичне очікування фактично дорівнює нулю, отже модель можна вважати адекватною; за критерієм серій а також за критерієм піків всі нерівності виконуються, отже трендова модель вважається адекватною; отримане значення RS-критерію, в порівнянні з табличними нижньою і верхньою межами (при n=11 нижня границя дорівнює 2,60, а верхня 3,720), потрапляє в інтервал між критичними границями, отже гіпотеза про нормальний розподіл приймається; отримане значення d-критерія менше нижнього табличного значення d1, тоді гіпотеза відхиляється і модель неадекватна.

Тобто, модель не відповідає вимогам четвертого параметру властивостей залишкової послідовності на адекватність, тому її вважати адекватною неможна.

 


Список використаної літератури

  1.  Автоматика и управление в технических системах: В 11 кн. Кн..2. Киричков В.Н. Идентификация объектов систем управления технологическими процесами. /Под ред. А. А. Краснопрошиной. – К.: Выща шк.., 1990. – 263с.
  2.  Гроп Д., Методы идентификации систем. - М.: Мир, 1983. - 302с.
  3.  Барабащук В.И. и др.. Планирование эксперимента в технике. – К.: Техніка, 1984. – 200с.
  4.  Райбман Н.С., Чадеев В.М. Построение моделей процессов производства. – М.: Энергия, 1975. –376с.
  5.  Костюк В.И., Киричков В.И., Суботін Н.Я., Гнучка ідентифікація систем і обьектов. Математичні моделі й структурна ідентифікація, - Київ: КПИ, 1987, 89с.
  6.  Цыпкин П., Основи ідентифікації систем керування - М. : Мир, 1975,688.
  7.  В.Б. Тихомиров, Планування й аналіз зксперимента - М. : Легка індустрія, 1979, 423с.
  8.  Ю.П. Адлер, Ю.В. Грановский, Планування зксперимента при пошуку оптимальних умов - М.. Наука, 1971.
  9.  Дьяконов В. Mathcad 2000: учебный курс. – СПб.: Питер, 2000. – 592с.


 

А также другие работы, которые могут Вас заинтересовать

26877. Желудочки головного мозга 5 KB
  Желудочки головного мозга. К желудочкам головного мозга относятся: Боковые желудочки ventriculi laterales telencephalon; Боковые желудочки головного мозга лат. ventriculi laterales полости в головном мозге содержащие ликвор наиболее крупные в желудочковой системе головного мозга. Третий желудочек ventriculus tertius diencephalon; Третий желудочек мозга ventriculus tertiusнаходится между зрительными буграми имеет кольцевидную форму так как в него прорастает промежуточная масса зрительных бугровmassa intermedia thalami.
26878. Оболочки и сосуды головного и спинного мозга 4.04 KB
  Оболочки и сосуды головного и спинного мозга Головной и спинной мозг окружен тремя мозговыми оболочками meninges. В области большого затылочного отверстия оболочки головного мозга переходят в оболочки спинного мозга. 4 показаны оболочки головного мозга. Твердая оболочка спинного мозга отделена от внутренней поверхности позвоночного канала от надкостницы позвоночного канала надоболочечным эпидуральным пространством.
26879. Общие закономерности строения и ветвления спинномозговых нервов 5.94 KB
  Спинномозговые нервы от спинного мозга отходят метамерно в соответствии с делением костной основы и подразделяются на шейные грудные поясничные крестцовые и хвостовые. Черепномозговые нервы отходят от продолговатого с XII по V пару и среднего мозга IV и III пары. Черепномозговые нервы отходят преимущественно одним корнем соответствующим дорсальному или вентральному корешку спинномозгового нерва. Строение Спинномозговые или спинальные нервы 31 пара берут начало в спинном мозге и выходят из него между соседними позвонками почти по...
26880. Грудные спинномозговые нервы. Плечевое сплетение 3.12 KB
  Грудные спинномозговые нервы. Основные нервы Дорсальный нерв лопатки тп. dorsalisscapulae Надлопаточный нерв п. suprascapularrs Подлопаточные нервы шї.
26881. Поясничные спинномозговые нервы. Поясничное сплетение 3.08 KB
  Только первые 2 4 поясничных нерва имеют белые соединительные ветви но все получаютсерые соединительные ветви и делятся на дорсальные и Вентральные ветви. Дорсальные ветви идут в разгибатели йоясницы и отдают латеральные кожные ветви в ягодичные краниальные нервы nn. Вентральные ветви образуют поясничное сплетение т plexuslumbales соединяющееся с крестцовым сплетением Подвздошноподчревный нерв п. genitofemoral і s 16 начинается от L III II и IV и отдает ветви в малую поясничную квадратную поясничную и брюшные мышцы и идет по...
26882. Крестцовые спинномозговые нервы. Крестцовое сплетение 2.6 KB
  Крестцовые спинномозговые нервы эти нервы делятся на передние и задние ветви при этом передние ветви выходят на тазовую поверхность крестца в полость таза задние на дорсальную его поверхность. Задние ветви в свою очередь делятся на внутренние и наружные. Внутренние ветви иннервируют нижние сегменты глубоких мышц спины и оканчиваются кожными ветвями в области крестца ближе к средней линии. Наружные ветви I III крестцовых спинномозговых нервов направляются книзу и имеют название средних кожных нервов ягодиц пп.
26883. Седалищный нерв 5.99 KB
  Седалищный нерв Седалищный нерв п. Он и ннервирует всю конечность за исключением некоторых ягодичных мышц сгибателей тазобедренного сустава и разгибателей коленного сустава. Проходит позади тазобедренного сустава и делится на большеберцовый и малоберцовый нервы идущие в области бедра вместе по медиальной поверхности двуглавой мышцы бедра почти до коленного сустава. Малоберцовый нерв п.
26884. Морфофункциональная характеристика черепно-мозговых нервов 4.77 KB
  морфофункциональная характеристика черепномозговых нервов Каждый отдел головного мозга человека исторически связан с конкретными дистантными анализаторами хеморецепторами фоторецепторами тактильными или слуховыми системами анализа внешней и внутренней среды организма. Как правило рецепторы расположены на некотором расстоянии от мозга и соединены с ним посредством нервов. Черепные нервы устаревшее название черепномозговые нервы двенадцать пар нервов выходящих из мозгового вещества в основании мозга и иннервирующих структуры...
26885. V-я и VI 1-я пары черепно-мозговых нервов. Общая характеристика, ветвление 2.98 KB
  Двенадцать пар черепномозговых нервов принято делить на 3 чувствительных I пара обонятельный U пара зрительный и VIII пара преддверноулитковый 5 двигательных III пара глазодвигательный IV пара блоковый VI пара отводящий XI пара добавочный и XII пара подъязычный и 4 смешанных V пара тройничный VII пара лицевой IX пара языкоглоточный и X пара блуждающий; в состав последних входят чувствительные двигательные и вегетативные волокна. 5 пара тройничный нервn.