83235

Разработка программы для вычисления одного из интегралов одним из методом

Курсовая

Информатика, кибернетика и программирование

В этой работе выполнено численное вычисление определенного интеграла методом прямоугольников(9) и трапеций(10). Двумя разных интегралов (1), (2) и за один запуск программы выполняется вычисление одного из интегралов одним из методом. Выбор интеграла и метода решения производится с помощью меню, организованного в диалоговом окне.

Русский

2015-03-12

422.96 KB

7 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

МЕЖДУНАРОДНЫЙ ИНСТИТУТ КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

ЛИПЕЦКИЙ ФИЛИАЛ

КАФЕДРА ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

КУРСОВАЯ РАБОТА

по дисциплине «Программирование в среде MS Office»

«Разработка программы для вычисления одного из интегралов одним из методом»

Выполнил:                                                   студент гр. ВМз –11

                                                                                   __________  Титов С.А.

                                                                                       

ПРОВЕРИЛ:                                                         Золотухин П. И.

                                                                              ______________

Липецк 2014

ЗАДАНИЕ

 Численное вычисление определенного интеграла методом прямоугольников и трапеций. Два разных интеграла

                                                                                                   (1)

                                                     .                                               (2)           

За один запуск программы выполняется вычисление одного из интегралов одним из методом. Выбор интеграла и метода решения производится с помощью меню, организованного в диалоговом окне.

Аннотация

В этой работе выполнено  численное вычисление определенного интеграла методом прямоугольников(9) и трапеций(10). Двумя разных интегралов  (1), (2) и за один запуск программы выполняется вычисление одного из интегралов одним из методом. Выбор интеграла и метода решения производится с помощью меню, организованного в диалоговом окне.

Содержание

1.Постановка вычислительной задачи и описание используемого численного метода решения.………………………...………… ……………………………..5

1.1 Методы прямоугольников и трапеций……………………………..5-7

2.Описание алгоритма решения……………………………………………..…...8

          2.1 Пример вычисления определенного интеграла методом трапеции в

                MS Exсel………………………………………………………………..8

          2.2 Пример вычисления определенного интеграла методом   

                 прямоугольников………………………………………………….…..9  

          2.3 Блок схема…………………………………………………………….10      

3.Руководство оператора    ……………………………………………………..11

           3.1Назначение программы…………………………………………........11

           3.2Условия выполнения программы………………………..………11-12

           3.3Выполнение программы……………………………………………..12     

4.Приложения……………………………………………………………………13

            4.1Листинг программы………………………………………...……13-16

5.Библиографический список …………………………………………………..17

  1.  Постановка вычислительной задачи и описание используемого численного метода решения

1.1 Методы прямоугольников и трапеций

Простейшим методом численного интегрирования  является метод прямоугольников. Он непосредственно использует замену определенного интеграла интегральной суммой

;                                             (3)

.                              (4)

В качестве точек ξi выберем средние точки элементарных отрезков [xi-1, xi]:

.                           (5)

Тогда (1) и  (2) запишутся так:

                                                  ;    i=1,2,…,n.           (6)      

Формула (4) и есть формула прямоугольников. Эта формула использует интерполяцию нулевого порядка (кусочно постоянную) (см. рис. 1).

Рис. 1. Геометрический смысл определенного интеграла

Метод трапеций использует линейную интерполяцию, т.е. график функции у=f(x) представляется в виде ломанной, соединяющей точки с координатами (xi-1, yi-1) и (xi, yi). В этом случае площадь всей фигуры (криволинейной трапеции) складывается из площадей элементарных прямолинейных трапеций (рис. 2).

Площадь каждой элементарной трапеции равна произведению полусуммы оснований на  высоту:

                                      ; (i= 1,2, … , n) .                                     (7)

Складывая площади элементарных фигур, получаем формулу трапеций для численного интегрирования:

                                       .                                          (8)

Важным частным случаем рассмотренных формул является их применение при численных интегрирований с постоянным шагом hi = h = const

Рис. 2. Схема к выводу формулы трапеций

( i = 1, 2, …, n). Формулы прямоугольников и  трапеций в этом случае принимают соответственно вид:

                                          ,                      (9)

                                                                          (10)

  1.  Описание алгоритма решения

  1.   Пример вычисления определенного интеграла (1), (2) методом трапеции (10) в MS Excel показано в Рис. 3-4

Рис. 3 Решение определенного интеграла (2) методом трапеций (10)

Рис. 4 Решение определенного интеграла (1) методом трапеций (10)

  1.   Пример вычисления определенного интеграла (1), (2) методом прямоугольников (9) в MS Excel показано Рис. 5-6

Рис. 5 Решение определенного интеграла (2) методом прямоугольников(9)

Рис. 6 Решение определенного интеграла (1) методом прямоугольников(9)

2.3 Блок схема представлена на Рис.7

Рис.7 Блок схема

  1.  Руководство оператора

  1.   Назначение программы

Программа предназначена для вычисления определенного интеграла методом прямоугольников и трапеций.

  1.   Условия выполнения программы

Для выполнения программы необходимо произвести выгрузку данных с листа excel(Рис.8), txt(Рис.9), access(Рис.10), выбрать уравнение и метод решения(Рис.11).

Рис.8 Данные листа Excel

Рис.9 Данные листа TXT

Рис.10 Данные листа ACCESS

Рис.11 Выбор уравнения и метода решения

  1.  Выполнение программы

Для выполнения программы необходимо выбрать метод ввода данных (с листа Excel, txt, access). Для этого необходимо нажать на кнопку нужного ввода данных (Рис.12).

Рис.12 Выбор ввода данных

После выбираем уравнение, затем метод (Рис.11),  дальше нужно нажать кнопку результат (Рис.15) и выполнится решение выбранного уравнения, а результат выведется в нижнее окно(Рис.15).

Рис.13 Результат программы

  1.  Приложения

4.1Листинг программы

Private Sub CommandButton1_Click()

TextBox1 = Cells(1, 1)

TextBox2 = Cells(2, 1)

TextBox3 = Cells(3, 1)

End Sub

Private Sub CommandButton2_Click()

Dim MyFile

Dim i As Integer

Dim tS As String

Dim s As String

 

MyFile = FreeFile

Open ("C:\kurs\test.txt") For Input As #MyFile

 

For i = 1 To 1

Line Input #MyFile, tS

If i >= 1 Then TextBox1 = tS

Next i

For i = 2 To 2

Line Input #MyFile, tS '

If i >= 2 Then TextBox2 = tS

Next i

For i = 3 To 3

Line Input #MyFile, tS '

If i >= 3 Then TextBox3 = tS

Next i

Close #MyFile

End Sub

Private Sub CommandButton3_Click()

a = Val(TextBox1)

b = Val(TextBox2)

n = Val(TextBox3)

Dim h!, x!, y!

h = (b - a) / n

Z = h / 2

x0 = a

x1 = x0 + h

x2 = x1 + h

x3 = x2 + h

x4 = x3 + h

x5 = x4 + h

x6 = x5 + h

x7 = x6 + h

x8 = x7 + h

x9 = x8 + h

x10 = x9 + h

If OptionButton6 Then

y0 = (x0 ^ 2) * Log(x0)

y1 = (x1 ^ 2) * Log(x1)

y2 = (x2 ^ 2) * Log(x2)

y3 = (x3 ^ 2) * Log(x3)

y4 = (x4 ^ 2) * Log(x4)

y5 = (x5 ^ 2) * Log(x5)

y6 = (x6 ^ 2) * Log(x6)

y7 = (x7 ^ 2) * Log(x7)

y8 = (x8 ^ 2) * Log(x8)

y9 = (x9 ^ 2) * Log(x6)

y10 = (x10 ^ 2) * Log(x10)

 

y00 = y0 + Z

y11 = y1 + Z

y22 = y2 + Z

y33 = y3 + Z

y44 = y4 + Z

y55 = y5 + Z

y66 = y6 + Z

y77 = y7 + Z

y88 = y8 + Z

y99 = y9 + Z

y100 = y10 + Z

End If

If OptionButton5 Then

y0 = (2 + x0) ^ (1 / 2)

y1 = (2 + x1) ^ (1 / 2)

y2 = (2 + x2) ^ (1 / 2)

y3 = (2 + x3) ^ (1 / 2)

y4 = (2 + x4) ^ (1 / 2)

y5 = (2 + x5) ^ (1 / 2)

y6 = (2 + x6) ^ (1 / 2)

y7 = (2 + x7) ^ (1 / 2)

y8 = (2 + x8) ^ (1 / 2)

y9 = (2 + x9) ^ (1 / 2)

y10 = (2 + x10) ^ (1 / 2)

y00 = y0 + Z

y11 = y1 + Z

y22 = y2 + Z

y33 = y3 + Z

y44 = y4 + Z

y55 = y5 + Z

y66 = y6 + Z

y77 = y7 + Z

y88 = y8 + Z

y99 = y9 + Z

y100 = y10 + Z

End If

If OptionButton3 Then

rez = h * ((y0 - y10) / 2 + (y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9))

End If

If OptionButton4 Then

rez = h * (y00 + y11 + y22 + y33 + y44 + y55 + y66 + y77 + y88 + y99 + y100)

End If

TextBox4 = rez

End Sub

Private Sub CommandButton4_Click()

               Dim con As New ADODB.Connection

               Dim rst As New ADODB.Recordset

 

           

               strPath = "D:\Users\admin\Desktop\kurs\áàçà.accdb"

               

               ConnectionString = "Provider=Microsoft.ACE.OLEDB.12.0; Data Source=" & strPath & "; Jet OLEDB:Database;"

               

               con.Open ConnectionString

               rst.Open "SELECT a, b, n FROM tab", con

               If Not rst.EOF Then

                               TextBox1.Value = rst.Fields(0).Value

                               TextBox2.Value = rst.Fields(1).Value

                               TextBox3.Value = rst.Fields(2).Value

               Else

                   MsgBox "ÒàáëèöàÏóñòà"

               End If

               rst.Close

               con.Close

   

  

End Sub

  1.  Библиографический список

1. Амосов А.А. Вычислительные методы для инженеров [Текст]: Учеб. пособие / А.А. Амосов, Ю.А. Дубинский, Н.В. Копченова. – М.: Высш. шк., 1994.–544 с.

2. Бахвалов Н.С. Численные методы [Текст]: Учеб. пособие / Н.С. Бахвалов, Н.П. Жидков, Г.М.  Кобельков. - М.: Лаборатория базовых знаний, 2000. – 624 с.

3. Боглаев Ю.П. Вычислительная математика и программирование[Текст]: Учеб. пособие /  Ю.П. Боглаев. - М: Высш. шк., 1990. – 544 с.

4. Вержбицкий В.М. Численные методы (линейная алгебра и нелинейные уравнения) [Текст]: Учеб. пособие / В.М. Вержбицкий. - М.: Высш. шк., 2000.- 266 с.

5. Вержбицкий В.М. Численные методы (математический анализ и обыкновенные дифференциальные уравнения) [Текст]: Учеб. пособие / В.М. Вержбицкий. - М.: Высш. шк., 2001.- 382 с.

6. Светозарова Г.И. Практикум по программированию на языке бейсик [Текст]: Учеб. пособие / Г.И. Светозарова, А.А. Мельников, А.А. Козловский. – М.: Наука, 1988. - 363 с.

7. Шуп Т.Е. Прикладные численные методы в физике и технике [Текст] / Т.Е. Шуп. – М.: Высш. шк., 1990. – 225 с.

8. Дьяконов В.П. Справочник по алгоритмам и программам на языке бейсик для персональных ЭВМ [Текст] / В.П. Дьяконов. – М.: Наука, 1987. - 240 с.

9. Васильков Ю.В. Компьютерные технологии вычислений в математическом моделировании [Текст] Учеб. пособие / Ю.В.Васильков, Н.Н.Василькова. – М.: Финансы и статистика, 2002.– 256 с.

10. Кудинов Ю.И. Практическая работа в VBA [Текст] Учеб. пособие / Ю.И. Кудинов  – Липецк.: Изд-во ЛГТУ, 2001. – 98 с.


 

А также другие работы, которые могут Вас заинтересовать

32806. Субъективный идеализм в философии Н.В. (Дж.Беркли, Д.Юм) 14.1 KB
  Джордж Беркли 1685 1753 гг. Беркли внес весомый вклад в теорию познания четко поставив вопрос о соотношении объективного и субъективного в ощущениях об объективности причинности и о видах существования. Беркли утверждал что мир не существует независимо от человека а представляет собой комплекс ощущений и восприятий. Философия Беркли основывается на следующих основных принципах: 1 существовать значит быть воспринимаемым; 2 я не в состоянии помыслить ощущаемые вещи или предмет независимо от их ощущения и восприятия; 3 мы никогда не...
32807. Философия французского Посвящения 17.75 KB
  Философия Просвещения опиралась на достижения наук: биологии физики медицины которые стали естественнонаучным основанием раскрытия сущности и природы человека. Просветители развивали материалистические взгляды на природу и человека. Дидро уподоблял человека инструменту наделенному чувствительностью и памятью а Ламетри проводил аналогию между человеком и машиной. Однако французские материалисты обращали внимание и на роль социальнокультурных факторов появления человека уделяли внимание роли языка как средства общения и познания мира.
32808. Особенности становления и основные черты немецкой классической философии 11.99 KB
  Немецкая философия конца ХVIII первой трети ХIХ веков представлена именами Канта Фихте Шеллинга Гегеля Фейербаха и представляет собой важный этап в развитии мировой философской мысли. Произведения Шиллера и Гете философские труды Канта и Гегеля отразили противоречивость эпохи. Маркс назвал философию Канта теорией буржуазной революции.
32809. Философия И. Канта: субъективный идеализм и агностицизм 14.27 KB
  Канта: субъективный идеализм и агностицизм. Основателем немецкой классической философии считается Иммануил Кант 1724 1804 гг. Основное содержание своей философии Кант изложил в виде следующих вопросов: Что я могу знатьЧто я должен делатьНа что я могу надеятьсяЧто есть человек. В творчестве Канта принято выделять 2 периода: 1 докритический до 70х гг.
32810. Философия Гегеля: абсолютный идеализм и диалектика 14.28 KB
  Диалектика в творчестве Гегеля это теория развития всего сущего и метод познания действительности. В ходе своего саморазвития Абсолютная идея проходит ряд ступеней развиваясь от простого к сложному от абстрактного к конкретному. Высшая ступень развития абсолютный дух. Причем философия означает завершение итог развития Абсолютной идеи: по определению Гегеля философия это духовная квинтэссенция эпохи самосознание эпохи.
32811. Философия Л. Фейербаха: антропологический материализм и критика христианства 15.47 KB
  Основным предметом философского анализа Фейербах считал проблему человека и рассматривал ее с материалистических позиций. Фейербах рассматривает человека как природное живое существо. Философ подчеркивал тесное единство человека и окружающей его природы. Посредством человека природа познает саму себя.
32812. Условия возникновения и основные положения маркистской философии 15.99 KB
  Возникновение марксизма явилось закономерным результатом общественноисторического прогресса а также развития научной и философской мысли. это период развития капиталистических отношений в Западной Европе. В этих условиях Маркс и Энгельс пришли к выводу о необходимости научного исследования законов общественного развития и создания на их основе теории указывающей пути и средства освободительной борьбы обосновывающей неизбежность перехода от капитализма к новому этапу развития общества. Дарвина явилась естественнонаучным основанием идеи...
32813. Этапы развития русской философии, её основные черты 15.04 KB
  Этапы развития русской философии её основные черты. Основные этапы развития русской философии совпадают с этапами развития истории России. развитие русской философии неразрывно связано с социальнополитическими событиями с особенностями социальноисторического процесса в России. Этапы развития русской философии.
32814. П.Я. Чаадаев – первый русский философ. Западники и славянофилы. «Русская идея» 15.9 KB
  Русская идея. Основная идея гносеологии Чаадаева объективная обусловленность сознания. Идея соборности является центральной в его учении и обозначал свободное объединение людей на основе любви к Богу и друг к другу. Русская идея и ее современное звучание.