83235

Разработка программы для вычисления одного из интегралов одним из методом

Курсовая

Информатика, кибернетика и программирование

В этой работе выполнено численное вычисление определенного интеграла методом прямоугольников(9) и трапеций(10). Двумя разных интегралов (1), (2) и за один запуск программы выполняется вычисление одного из интегралов одним из методом. Выбор интеграла и метода решения производится с помощью меню, организованного в диалоговом окне.

Русский

2015-03-12

422.96 KB

7 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

МЕЖДУНАРОДНЫЙ ИНСТИТУТ КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

ЛИПЕЦКИЙ ФИЛИАЛ

КАФЕДРА ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

КУРСОВАЯ РАБОТА

по дисциплине «Программирование в среде MS Office»

«Разработка программы для вычисления одного из интегралов одним из методом»

Выполнил:                                                   студент гр. ВМз –11

                                                                                   __________  Титов С.А.

                                                                                       

ПРОВЕРИЛ:                                                         Золотухин П. И.

                                                                              ______________

Липецк 2014

ЗАДАНИЕ

 Численное вычисление определенного интеграла методом прямоугольников и трапеций. Два разных интеграла

                                                                                                   (1)

                                                     .                                               (2)           

За один запуск программы выполняется вычисление одного из интегралов одним из методом. Выбор интеграла и метода решения производится с помощью меню, организованного в диалоговом окне.

Аннотация

В этой работе выполнено  численное вычисление определенного интеграла методом прямоугольников(9) и трапеций(10). Двумя разных интегралов  (1), (2) и за один запуск программы выполняется вычисление одного из интегралов одним из методом. Выбор интеграла и метода решения производится с помощью меню, организованного в диалоговом окне.

Содержание

1.Постановка вычислительной задачи и описание используемого численного метода решения.………………………...………… ……………………………..5

1.1 Методы прямоугольников и трапеций……………………………..5-7

2.Описание алгоритма решения……………………………………………..…...8

          2.1 Пример вычисления определенного интеграла методом трапеции в

                MS Exсel………………………………………………………………..8

          2.2 Пример вычисления определенного интеграла методом   

                 прямоугольников………………………………………………….…..9  

          2.3 Блок схема…………………………………………………………….10      

3.Руководство оператора    ……………………………………………………..11

           3.1Назначение программы…………………………………………........11

           3.2Условия выполнения программы………………………..………11-12

           3.3Выполнение программы……………………………………………..12     

4.Приложения……………………………………………………………………13

            4.1Листинг программы………………………………………...……13-16

5.Библиографический список …………………………………………………..17

  1.  Постановка вычислительной задачи и описание используемого численного метода решения

1.1 Методы прямоугольников и трапеций

Простейшим методом численного интегрирования  является метод прямоугольников. Он непосредственно использует замену определенного интеграла интегральной суммой

;                                             (3)

.                              (4)

В качестве точек ξi выберем средние точки элементарных отрезков [xi-1, xi]:

.                           (5)

Тогда (1) и  (2) запишутся так:

                                                  ;    i=1,2,…,n.           (6)      

Формула (4) и есть формула прямоугольников. Эта формула использует интерполяцию нулевого порядка (кусочно постоянную) (см. рис. 1).

Рис. 1. Геометрический смысл определенного интеграла

Метод трапеций использует линейную интерполяцию, т.е. график функции у=f(x) представляется в виде ломанной, соединяющей точки с координатами (xi-1, yi-1) и (xi, yi). В этом случае площадь всей фигуры (криволинейной трапеции) складывается из площадей элементарных прямолинейных трапеций (рис. 2).

Площадь каждой элементарной трапеции равна произведению полусуммы оснований на  высоту:

                                      ; (i= 1,2, … , n) .                                     (7)

Складывая площади элементарных фигур, получаем формулу трапеций для численного интегрирования:

                                       .                                          (8)

Важным частным случаем рассмотренных формул является их применение при численных интегрирований с постоянным шагом hi = h = const

Рис. 2. Схема к выводу формулы трапеций

( i = 1, 2, …, n). Формулы прямоугольников и  трапеций в этом случае принимают соответственно вид:

                                          ,                      (9)

                                                                          (10)

  1.  Описание алгоритма решения

  1.   Пример вычисления определенного интеграла (1), (2) методом трапеции (10) в MS Excel показано в Рис. 3-4

Рис. 3 Решение определенного интеграла (2) методом трапеций (10)

Рис. 4 Решение определенного интеграла (1) методом трапеций (10)

  1.   Пример вычисления определенного интеграла (1), (2) методом прямоугольников (9) в MS Excel показано Рис. 5-6

Рис. 5 Решение определенного интеграла (2) методом прямоугольников(9)

Рис. 6 Решение определенного интеграла (1) методом прямоугольников(9)

2.3 Блок схема представлена на Рис.7

Рис.7 Блок схема

  1.  Руководство оператора

  1.   Назначение программы

Программа предназначена для вычисления определенного интеграла методом прямоугольников и трапеций.

  1.   Условия выполнения программы

Для выполнения программы необходимо произвести выгрузку данных с листа excel(Рис.8), txt(Рис.9), access(Рис.10), выбрать уравнение и метод решения(Рис.11).

Рис.8 Данные листа Excel

Рис.9 Данные листа TXT

Рис.10 Данные листа ACCESS

Рис.11 Выбор уравнения и метода решения

  1.  Выполнение программы

Для выполнения программы необходимо выбрать метод ввода данных (с листа Excel, txt, access). Для этого необходимо нажать на кнопку нужного ввода данных (Рис.12).

Рис.12 Выбор ввода данных

После выбираем уравнение, затем метод (Рис.11),  дальше нужно нажать кнопку результат (Рис.15) и выполнится решение выбранного уравнения, а результат выведется в нижнее окно(Рис.15).

Рис.13 Результат программы

  1.  Приложения

4.1Листинг программы

Private Sub CommandButton1_Click()

TextBox1 = Cells(1, 1)

TextBox2 = Cells(2, 1)

TextBox3 = Cells(3, 1)

End Sub

Private Sub CommandButton2_Click()

Dim MyFile

Dim i As Integer

Dim tS As String

Dim s As String

 

MyFile = FreeFile

Open ("C:\kurs\test.txt") For Input As #MyFile

 

For i = 1 To 1

Line Input #MyFile, tS

If i >= 1 Then TextBox1 = tS

Next i

For i = 2 To 2

Line Input #MyFile, tS '

If i >= 2 Then TextBox2 = tS

Next i

For i = 3 To 3

Line Input #MyFile, tS '

If i >= 3 Then TextBox3 = tS

Next i

Close #MyFile

End Sub

Private Sub CommandButton3_Click()

a = Val(TextBox1)

b = Val(TextBox2)

n = Val(TextBox3)

Dim h!, x!, y!

h = (b - a) / n

Z = h / 2

x0 = a

x1 = x0 + h

x2 = x1 + h

x3 = x2 + h

x4 = x3 + h

x5 = x4 + h

x6 = x5 + h

x7 = x6 + h

x8 = x7 + h

x9 = x8 + h

x10 = x9 + h

If OptionButton6 Then

y0 = (x0 ^ 2) * Log(x0)

y1 = (x1 ^ 2) * Log(x1)

y2 = (x2 ^ 2) * Log(x2)

y3 = (x3 ^ 2) * Log(x3)

y4 = (x4 ^ 2) * Log(x4)

y5 = (x5 ^ 2) * Log(x5)

y6 = (x6 ^ 2) * Log(x6)

y7 = (x7 ^ 2) * Log(x7)

y8 = (x8 ^ 2) * Log(x8)

y9 = (x9 ^ 2) * Log(x6)

y10 = (x10 ^ 2) * Log(x10)

 

y00 = y0 + Z

y11 = y1 + Z

y22 = y2 + Z

y33 = y3 + Z

y44 = y4 + Z

y55 = y5 + Z

y66 = y6 + Z

y77 = y7 + Z

y88 = y8 + Z

y99 = y9 + Z

y100 = y10 + Z

End If

If OptionButton5 Then

y0 = (2 + x0) ^ (1 / 2)

y1 = (2 + x1) ^ (1 / 2)

y2 = (2 + x2) ^ (1 / 2)

y3 = (2 + x3) ^ (1 / 2)

y4 = (2 + x4) ^ (1 / 2)

y5 = (2 + x5) ^ (1 / 2)

y6 = (2 + x6) ^ (1 / 2)

y7 = (2 + x7) ^ (1 / 2)

y8 = (2 + x8) ^ (1 / 2)

y9 = (2 + x9) ^ (1 / 2)

y10 = (2 + x10) ^ (1 / 2)

y00 = y0 + Z

y11 = y1 + Z

y22 = y2 + Z

y33 = y3 + Z

y44 = y4 + Z

y55 = y5 + Z

y66 = y6 + Z

y77 = y7 + Z

y88 = y8 + Z

y99 = y9 + Z

y100 = y10 + Z

End If

If OptionButton3 Then

rez = h * ((y0 - y10) / 2 + (y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9))

End If

If OptionButton4 Then

rez = h * (y00 + y11 + y22 + y33 + y44 + y55 + y66 + y77 + y88 + y99 + y100)

End If

TextBox4 = rez

End Sub

Private Sub CommandButton4_Click()

               Dim con As New ADODB.Connection

               Dim rst As New ADODB.Recordset

 

           

               strPath = "D:\Users\admin\Desktop\kurs\áàçà.accdb"

               

               ConnectionString = "Provider=Microsoft.ACE.OLEDB.12.0; Data Source=" & strPath & "; Jet OLEDB:Database;"

               

               con.Open ConnectionString

               rst.Open "SELECT a, b, n FROM tab", con

               If Not rst.EOF Then

                               TextBox1.Value = rst.Fields(0).Value

                               TextBox2.Value = rst.Fields(1).Value

                               TextBox3.Value = rst.Fields(2).Value

               Else

                   MsgBox "ÒàáëèöàÏóñòà"

               End If

               rst.Close

               con.Close

   

  

End Sub

  1.  Библиографический список

1. Амосов А.А. Вычислительные методы для инженеров [Текст]: Учеб. пособие / А.А. Амосов, Ю.А. Дубинский, Н.В. Копченова. – М.: Высш. шк., 1994.–544 с.

2. Бахвалов Н.С. Численные методы [Текст]: Учеб. пособие / Н.С. Бахвалов, Н.П. Жидков, Г.М.  Кобельков. - М.: Лаборатория базовых знаний, 2000. – 624 с.

3. Боглаев Ю.П. Вычислительная математика и программирование[Текст]: Учеб. пособие /  Ю.П. Боглаев. - М: Высш. шк., 1990. – 544 с.

4. Вержбицкий В.М. Численные методы (линейная алгебра и нелинейные уравнения) [Текст]: Учеб. пособие / В.М. Вержбицкий. - М.: Высш. шк., 2000.- 266 с.

5. Вержбицкий В.М. Численные методы (математический анализ и обыкновенные дифференциальные уравнения) [Текст]: Учеб. пособие / В.М. Вержбицкий. - М.: Высш. шк., 2001.- 382 с.

6. Светозарова Г.И. Практикум по программированию на языке бейсик [Текст]: Учеб. пособие / Г.И. Светозарова, А.А. Мельников, А.А. Козловский. – М.: Наука, 1988. - 363 с.

7. Шуп Т.Е. Прикладные численные методы в физике и технике [Текст] / Т.Е. Шуп. – М.: Высш. шк., 1990. – 225 с.

8. Дьяконов В.П. Справочник по алгоритмам и программам на языке бейсик для персональных ЭВМ [Текст] / В.П. Дьяконов. – М.: Наука, 1987. - 240 с.

9. Васильков Ю.В. Компьютерные технологии вычислений в математическом моделировании [Текст] Учеб. пособие / Ю.В.Васильков, Н.Н.Василькова. – М.: Финансы и статистика, 2002.– 256 с.

10. Кудинов Ю.И. Практическая работа в VBA [Текст] Учеб. пособие / Ю.И. Кудинов  – Липецк.: Изд-во ЛГТУ, 2001. – 98 с.


 

А также другие работы, которые могут Вас заинтересовать

79599. Комплексный анализ уголовной ответственности за торговлю людьми 146.89 KB
  Социально-правовая характеристика торговли людьми по законодательству России и зарубежных стран. Понятие содержание и история развития законодательства об институте торговли людьми. Ответственность за торговлю людьми в законодательствах зарубежных стран. Проблемы уголовно-правового регулирования и квалификации элементов состава торговли людьми.
79600. Изучение тревожности у детей 6-7 лет средствами игровой терапии 643 KB
  Гипотеза нашего исследования основана на том, что коррекционная работа будет способствовать снижению тревожностей у детей 6-7 лет, Психолог обладает навыками моделирования и подбора специальных коррекционных упражнений, программ по преодолению тревожности, которые могут осуществлять адресную, индивидуальную коррекцию.
79601. ПРАКТИЧЕСКИЕ АСПЕКТЫ ПРИМЕНЕНИЯ ТЕАТРАЛИЗАЦИИ В СОЦИОКУЛЬТУРНОЙ СФЕРЕ (НА ПРИМЕРЕ СОЦИОКУЛЬТУРНОГО PR-ПРОЕКТА «ЭТЮД») 3.8 MB
  Все вышесказанное определило цель нашего дипломного проекта – охарактеризовать театрализацию как технологию связей с общественностью применительно в социокультурной сфере и реализовать социокультурный PR-проект, направленный на социализацию детей-сирот и детей, оставшихся без попечения родителей...
79602. СОЧЕТАНИЕ ТРАДИЦИОННЫХ И КОМПАРАТИВИСТСКИХ НАЧАЛ В ПРОЦЕССЕ КОНСТИТУЦИОННОГО РАЗВИТИЯ ПОЛИТИЧЕСКОЙ СИСТЕМЫ ЯПОНИИ 108 KB
  В течение длительного исторического периода Япония развивалась, подвергаясь культурному влиянию таких стран-соседей, как Китай и Корея, и поддерживала связи только с этими странами. В XV–XVI вв. в Японию проникли португальские и испанские миссионеры, благодаря которым страна впервые соприкоснулась...
79603. ПРАВО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ В ИНТЕРНЕТ 90 KB
  По существу, общественные отношения, складывающиеся в сети, развиваются «параллельно» реальным отношениям, в то же время совпадая с последними по содержанию. Сеть используется во всех сферах жизнедеятельности общества: политической, экономической, культурной и др.
79604. НОВОЕ В РАЗВИТИИ РОССИЙСКОГО АВТОРСКОГО ПРАВА 74 KB
  Поводом для написания настоящей статьи послужило участие в семинаре организованном Российским авторским обществом при финансовой поддержке Tcis проходившем в г. Широкий и представительный состав участников этого мероприятия позволил сделать ряд выводов о тенденциях современного авторского права...
79605. ЗАЩИТА ПРАВ ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ 81 KB
  Соответственно право на защиту здесь будет пониматься как субъективное гражданское право юридически закрепленная возможность управомоченного лица использовать специальные меры правоохранительного характера которая включает в себя как материально-правовые так и процессуальные меры.
79606. О НЕКОТОРЫХ МЕТОДОЛОГИЧЕСКИХ АСПЕКТАХ ИЗУЧЕНИЯ НОРМАТИВНО-ПРАВОВЫХ СИСТЕМ СУБЪЕКТОВ РФ В СВЕТЕ ПРОБЛЕМ ФЕДЕРАЛИЗМА 81 KB
  При изучении нормативно-правовых систем субъектов РФ по нашему мнению необходимо учитывать следующие моменты: отечественная доктрина не редко отрицает деление права в рамках федерации на федеральное право и право субъектов.
79607. О СУЩЕСТВУЮЩИХ ОПРЕДЕЛЕНИЯХ ТЕРМИНА «ЗАКОНОДАТЕЛЬСТВО» В ОТЕЧЕСТВЕННОМ ПРАВОВЕДЕНИИ 111.5 KB
  Подзаконные нормативные правовые акты если они включены в круг источников права отделяются от понятия законодательство и как правило закрепляются как самостоятельные источники наряду с законодательством законами. Речь идет о понимании законодательства как всего объема...