83235

Разработка программы для вычисления одного из интегралов одним из методом

Курсовая

Информатика, кибернетика и программирование

В этой работе выполнено численное вычисление определенного интеграла методом прямоугольников(9) и трапеций(10). Двумя разных интегралов (1), (2) и за один запуск программы выполняется вычисление одного из интегралов одним из методом. Выбор интеграла и метода решения производится с помощью меню, организованного в диалоговом окне.

Русский

2015-03-12

422.96 KB

10 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

МЕЖДУНАРОДНЫЙ ИНСТИТУТ КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

ЛИПЕЦКИЙ ФИЛИАЛ

КАФЕДРА ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

КУРСОВАЯ РАБОТА

по дисциплине «Программирование в среде MS Office»

«Разработка программы для вычисления одного из интегралов одним из методом»

Выполнил:                                                   студент гр. ВМз –11

                                                                                   __________  Титов С.А.

                                                                                       

ПРОВЕРИЛ:                                                         Золотухин П. И.

                                                                              ______________

Липецк 2014

ЗАДАНИЕ

 Численное вычисление определенного интеграла методом прямоугольников и трапеций. Два разных интеграла

                                                                                                   (1)

                                                     .                                               (2)           

За один запуск программы выполняется вычисление одного из интегралов одним из методом. Выбор интеграла и метода решения производится с помощью меню, организованного в диалоговом окне.

Аннотация

В этой работе выполнено  численное вычисление определенного интеграла методом прямоугольников(9) и трапеций(10). Двумя разных интегралов  (1), (2) и за один запуск программы выполняется вычисление одного из интегралов одним из методом. Выбор интеграла и метода решения производится с помощью меню, организованного в диалоговом окне.

Содержание

1.Постановка вычислительной задачи и описание используемого численного метода решения.………………………...………… ……………………………..5

1.1 Методы прямоугольников и трапеций……………………………..5-7

2.Описание алгоритма решения……………………………………………..…...8

          2.1 Пример вычисления определенного интеграла методом трапеции в

                MS Exсel………………………………………………………………..8

          2.2 Пример вычисления определенного интеграла методом   

                 прямоугольников………………………………………………….…..9  

          2.3 Блок схема…………………………………………………………….10      

3.Руководство оператора    ……………………………………………………..11

           3.1Назначение программы…………………………………………........11

           3.2Условия выполнения программы………………………..………11-12

           3.3Выполнение программы……………………………………………..12     

4.Приложения……………………………………………………………………13

            4.1Листинг программы………………………………………...……13-16

5.Библиографический список …………………………………………………..17

  1.  Постановка вычислительной задачи и описание используемого численного метода решения

1.1 Методы прямоугольников и трапеций

Простейшим методом численного интегрирования  является метод прямоугольников. Он непосредственно использует замену определенного интеграла интегральной суммой

;                                             (3)

.                              (4)

В качестве точек ξi выберем средние точки элементарных отрезков [xi-1, xi]:

.                           (5)

Тогда (1) и  (2) запишутся так:

                                                  ;    i=1,2,…,n.           (6)      

Формула (4) и есть формула прямоугольников. Эта формула использует интерполяцию нулевого порядка (кусочно постоянную) (см. рис. 1).

Рис. 1. Геометрический смысл определенного интеграла

Метод трапеций использует линейную интерполяцию, т.е. график функции у=f(x) представляется в виде ломанной, соединяющей точки с координатами (xi-1, yi-1) и (xi, yi). В этом случае площадь всей фигуры (криволинейной трапеции) складывается из площадей элементарных прямолинейных трапеций (рис. 2).

Площадь каждой элементарной трапеции равна произведению полусуммы оснований на  высоту:

                                      ; (i= 1,2, … , n) .                                     (7)

Складывая площади элементарных фигур, получаем формулу трапеций для численного интегрирования:

                                       .                                          (8)

Важным частным случаем рассмотренных формул является их применение при численных интегрирований с постоянным шагом hi = h = const

Рис. 2. Схема к выводу формулы трапеций

( i = 1, 2, …, n). Формулы прямоугольников и  трапеций в этом случае принимают соответственно вид:

                                          ,                      (9)

                                                                          (10)

  1.  Описание алгоритма решения

  1.   Пример вычисления определенного интеграла (1), (2) методом трапеции (10) в MS Excel показано в Рис. 3-4

Рис. 3 Решение определенного интеграла (2) методом трапеций (10)

Рис. 4 Решение определенного интеграла (1) методом трапеций (10)

  1.   Пример вычисления определенного интеграла (1), (2) методом прямоугольников (9) в MS Excel показано Рис. 5-6

Рис. 5 Решение определенного интеграла (2) методом прямоугольников(9)

Рис. 6 Решение определенного интеграла (1) методом прямоугольников(9)

2.3 Блок схема представлена на Рис.7

Рис.7 Блок схема

  1.  Руководство оператора

  1.   Назначение программы

Программа предназначена для вычисления определенного интеграла методом прямоугольников и трапеций.

  1.   Условия выполнения программы

Для выполнения программы необходимо произвести выгрузку данных с листа excel(Рис.8), txt(Рис.9), access(Рис.10), выбрать уравнение и метод решения(Рис.11).

Рис.8 Данные листа Excel

Рис.9 Данные листа TXT

Рис.10 Данные листа ACCESS

Рис.11 Выбор уравнения и метода решения

  1.  Выполнение программы

Для выполнения программы необходимо выбрать метод ввода данных (с листа Excel, txt, access). Для этого необходимо нажать на кнопку нужного ввода данных (Рис.12).

Рис.12 Выбор ввода данных

После выбираем уравнение, затем метод (Рис.11),  дальше нужно нажать кнопку результат (Рис.15) и выполнится решение выбранного уравнения, а результат выведется в нижнее окно(Рис.15).

Рис.13 Результат программы

  1.  Приложения

4.1Листинг программы

Private Sub CommandButton1_Click()

TextBox1 = Cells(1, 1)

TextBox2 = Cells(2, 1)

TextBox3 = Cells(3, 1)

End Sub

Private Sub CommandButton2_Click()

Dim MyFile

Dim i As Integer

Dim tS As String

Dim s As String

 

MyFile = FreeFile

Open ("C:\kurs\test.txt") For Input As #MyFile

 

For i = 1 To 1

Line Input #MyFile, tS

If i >= 1 Then TextBox1 = tS

Next i

For i = 2 To 2

Line Input #MyFile, tS '

If i >= 2 Then TextBox2 = tS

Next i

For i = 3 To 3

Line Input #MyFile, tS '

If i >= 3 Then TextBox3 = tS

Next i

Close #MyFile

End Sub

Private Sub CommandButton3_Click()

a = Val(TextBox1)

b = Val(TextBox2)

n = Val(TextBox3)

Dim h!, x!, y!

h = (b - a) / n

Z = h / 2

x0 = a

x1 = x0 + h

x2 = x1 + h

x3 = x2 + h

x4 = x3 + h

x5 = x4 + h

x6 = x5 + h

x7 = x6 + h

x8 = x7 + h

x9 = x8 + h

x10 = x9 + h

If OptionButton6 Then

y0 = (x0 ^ 2) * Log(x0)

y1 = (x1 ^ 2) * Log(x1)

y2 = (x2 ^ 2) * Log(x2)

y3 = (x3 ^ 2) * Log(x3)

y4 = (x4 ^ 2) * Log(x4)

y5 = (x5 ^ 2) * Log(x5)

y6 = (x6 ^ 2) * Log(x6)

y7 = (x7 ^ 2) * Log(x7)

y8 = (x8 ^ 2) * Log(x8)

y9 = (x9 ^ 2) * Log(x6)

y10 = (x10 ^ 2) * Log(x10)

 

y00 = y0 + Z

y11 = y1 + Z

y22 = y2 + Z

y33 = y3 + Z

y44 = y4 + Z

y55 = y5 + Z

y66 = y6 + Z

y77 = y7 + Z

y88 = y8 + Z

y99 = y9 + Z

y100 = y10 + Z

End If

If OptionButton5 Then

y0 = (2 + x0) ^ (1 / 2)

y1 = (2 + x1) ^ (1 / 2)

y2 = (2 + x2) ^ (1 / 2)

y3 = (2 + x3) ^ (1 / 2)

y4 = (2 + x4) ^ (1 / 2)

y5 = (2 + x5) ^ (1 / 2)

y6 = (2 + x6) ^ (1 / 2)

y7 = (2 + x7) ^ (1 / 2)

y8 = (2 + x8) ^ (1 / 2)

y9 = (2 + x9) ^ (1 / 2)

y10 = (2 + x10) ^ (1 / 2)

y00 = y0 + Z

y11 = y1 + Z

y22 = y2 + Z

y33 = y3 + Z

y44 = y4 + Z

y55 = y5 + Z

y66 = y6 + Z

y77 = y7 + Z

y88 = y8 + Z

y99 = y9 + Z

y100 = y10 + Z

End If

If OptionButton3 Then

rez = h * ((y0 - y10) / 2 + (y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9))

End If

If OptionButton4 Then

rez = h * (y00 + y11 + y22 + y33 + y44 + y55 + y66 + y77 + y88 + y99 + y100)

End If

TextBox4 = rez

End Sub

Private Sub CommandButton4_Click()

               Dim con As New ADODB.Connection

               Dim rst As New ADODB.Recordset

 

           

               strPath = "D:\Users\admin\Desktop\kurs\áàçà.accdb"

               

               ConnectionString = "Provider=Microsoft.ACE.OLEDB.12.0; Data Source=" & strPath & "; Jet OLEDB:Database;"

               

               con.Open ConnectionString

               rst.Open "SELECT a, b, n FROM tab", con

               If Not rst.EOF Then

                               TextBox1.Value = rst.Fields(0).Value

                               TextBox2.Value = rst.Fields(1).Value

                               TextBox3.Value = rst.Fields(2).Value

               Else

                   MsgBox "ÒàáëèöàÏóñòà"

               End If

               rst.Close

               con.Close

   

  

End Sub

  1.  Библиографический список

1. Амосов А.А. Вычислительные методы для инженеров [Текст]: Учеб. пособие / А.А. Амосов, Ю.А. Дубинский, Н.В. Копченова. – М.: Высш. шк., 1994.–544 с.

2. Бахвалов Н.С. Численные методы [Текст]: Учеб. пособие / Н.С. Бахвалов, Н.П. Жидков, Г.М.  Кобельков. - М.: Лаборатория базовых знаний, 2000. – 624 с.

3. Боглаев Ю.П. Вычислительная математика и программирование[Текст]: Учеб. пособие /  Ю.П. Боглаев. - М: Высш. шк., 1990. – 544 с.

4. Вержбицкий В.М. Численные методы (линейная алгебра и нелинейные уравнения) [Текст]: Учеб. пособие / В.М. Вержбицкий. - М.: Высш. шк., 2000.- 266 с.

5. Вержбицкий В.М. Численные методы (математический анализ и обыкновенные дифференциальные уравнения) [Текст]: Учеб. пособие / В.М. Вержбицкий. - М.: Высш. шк., 2001.- 382 с.

6. Светозарова Г.И. Практикум по программированию на языке бейсик [Текст]: Учеб. пособие / Г.И. Светозарова, А.А. Мельников, А.А. Козловский. – М.: Наука, 1988. - 363 с.

7. Шуп Т.Е. Прикладные численные методы в физике и технике [Текст] / Т.Е. Шуп. – М.: Высш. шк., 1990. – 225 с.

8. Дьяконов В.П. Справочник по алгоритмам и программам на языке бейсик для персональных ЭВМ [Текст] / В.П. Дьяконов. – М.: Наука, 1987. - 240 с.

9. Васильков Ю.В. Компьютерные технологии вычислений в математическом моделировании [Текст] Учеб. пособие / Ю.В.Васильков, Н.Н.Василькова. – М.: Финансы и статистика, 2002.– 256 с.

10. Кудинов Ю.И. Практическая работа в VBA [Текст] Учеб. пособие / Ю.И. Кудинов  – Липецк.: Изд-во ЛГТУ, 2001. – 98 с.


 

А также другие работы, которые могут Вас заинтересовать

14341. Личностный дифференциал 85.5 KB
  Личностный дифференциал Методика личностного дифференциала ЛД разработана на базе современного русского языка и отражает сформировавшиеся в нашей культуре представления о структуре личности. Методика ЛД адаптирована сотрудниками психоневрологического института и...
14342. Методика Ценностные ориентации» М.Рокича 43 KB
  Методика Ценностные ориентации М.Рокича Система ценностных ориентации определяет содержательную сторону направленности личности и составляет основу ее отношений к окружающему миру к другим людям к себе самой основу мировоззрения и ядро мотивации жизненной актив
14343. ЦЕННОСТНЫЕ ОРИЕНТАЦИИ МЕТОДИКА (М. Рокич) 41.5 KB
  ЦЕННОСТНЫЕ ОРИЕНТАЦИИ МЕТОДИКА М. Рокич Обзор Тест личности направленный на изучение ценностномотивационной сферы человека. Система ценностных ориентаций определяет содержательную сторону направленности личности и составляет основу ее отношений к окружающем
14344. Диагностика межличностных отношений (методика Т. Лири) 27.06 KB
  Диагностика межличностных отношений методика Т. Лири При исследовании межличностных отношений наиболее часто выделяются два фактора: доминированиеподчинение и дружелюбиеагрессивность. Именно эти факторы определяют общее впечатление о человеке в процессах межличн...
14345. К. ТОМАСА ОПИСАНИЯ ПОВЕДЕНИЯ ТЕСТ 69.5 KB
  К. ТОМАСА ОПИСАНИЯ ПОВЕДЕНИЯ ТЕСТ Обзор Опросник личностный разработан К. Томасом и предназначен для изучения личностной предрасположенности к конфликтному поведению выявления определенных стилей разрешения конфликтной ситуации. В России тест адаптирован Н.В. Гри...
14346. Тест Томаса 30.07 KB
  Тест Томаса Опитувальник особистісний розроблений К. Томасом і призначений для вивчення особистісної схильності до конфліктного поводження виявлення певних стилів вирішення конфліктної ситуації. Методика може використовуватися як орієнтовна для вивчення адаптаці
14348. Дослідження мотивації досягнення успіху та уникнення невдачі як провідної мотивації навчальної діяльності студентів 119 KB
  Зміст Вступ Розділ 1. Теоретичне вивчення явища мотивації досягнення. Мотивація досягнення успіху як провідна мотивація вступу до ВНЗ; Основні мотиви навчання. Звязок мотивації досягнення та навчальної мотивації студентів; Чинники що впливають на м
14349. Мотивация и деятельность 7.84 MB
  Мотивация и деятельность / X. Хекхаузен. 2е изд. СПб.: Питер; М.: Смысл 2003. 860 с: ил. Серия Мастера психологии. Книга Мотивация и деятельность известнейшего немецкого ученого X. Хекхаузена является в этом смысле уникальной для российского читателя поскольку пре