83406

Применение статистических методов для анализа и обоснования закономерностей в эмпирических данных

Контрольная

Математика и математический анализ

Цель и задачи работы закрепить теоретические знания вероятностного и статистического анализа системы случайных величин направленного на выявление и описание существующих между ними зависимостей; реализовать методики создания основных видов статистических моделей вероятностных экспериментов...

Русский

2015-03-14

609 KB

1 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Расчётно-графическая работа

По дисциплине: Теория вероятностей и математическая статистика

На тему: «Применение статистических методов для анализа и обоснования закономерностей в эмпирических данных»

Вариант 5 (модуль 1)

Группа:             АВТ-310

Студенты:        Ткачев Н.С.                                             Преподаватель:

               Цой А.С.                                                     Зыбарев В.М.

               Чабан А.А.

               Яковлева М.О.

НОВОСИБИРСК 2014
Оглавление.

[1] НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

[2] Расчётно-графическая работа

[3] Введение (модуль М1)

[3.0.1]    1.1 Цель и задачи работы    

[3.0.2] ЗАДАНИЕ:

[3.0.3] Описание задачи статистического анализа (формулировка проблем,  необходимые формулы, соответствующие варианту задания).

[3.0.4] 2.Расчетная часть

[3.0.4.1] Для N2  D=0.051667

[3.0.4.2] Для N2  D=0.025

[3.0.5] Гистограммы

[3.0.6] Предварительные выводы:

[3.0.7] Проверка гипотезы о нормальности распределения выборки

[3.0.7.1] Значение квантиля функции распределения Колмогорова при заданном уровне значимости

[3.0.8] Проверка гипотез об оценках параметров распределения.

[3.0.9] Проверка гипотез о равенстве мат. ожиданий и дисперсий.

[3.0.10] 1.Сравнение дисперсий технологий N1 – N3

[3.0.11] H0

[3.0.12] H1

[3.0.13] F

[3.0.14] F1

[3.0.15] F2

[3.0.16] Гипотеза

[3.0.17] S12= S22

[3.0.18] S12 != S22

[3.0.19] 0.5

[3.0.20] 1.486

[3.0.21] 1.574

[3.0.22] H0

[3.0.23] S12= S32

[3.0.24] S12 > S32

[3.0.25] 5

[3.0.26] 1.743

[3.0.27] 1.946

[3.0.28] H1

[3.0.29] S22= S32

[3.0.30] S22 > S32

[3.0.31] 10

[3.0.32] 1.743

[3.0.33] 1.946

[3.0.34] H1

[3.0.35] Сравнение математических ожиданий

[3.0.36] H0

[3.0.37] H1

[3.0.38] T

[3.0.39] T1

[3.0.40] T2

[3.0.41] Гипотеза

[3.0.42] m1 = m0

[3.0.43] m1 != m0

[3.0.44] 0.671

[3.0.45] 1.984

[3.0.46] 2.276

[3.0.47] H0

[3.0.48] m2 = m0

[3.0.49] m1 != m0

[3.0.50] 1.265

[3.0.51] 1.984

[3.0.52] 2.276

[3.0.53] H0

[3.0.54] m3 = m0

[3.0.55] m1 != m0

[3.0.56] 1.852

[3.0.57] 2.052

[3.0.58] 2.373

[3.0.59] H0

[3.0.60] Выводы:


  1.  Введение (модуль М1)

   1.1 Цель и задачи работы    

  •  закрепить теоретические знания вероятностного и статистического анализа системы случайных величин, направленного на выявление и описание существующих между ними зависимостей;
  •  реализовать методики создания основных видов статистических моделей вероятностных экспериментов;
  •  изучить и приобрести практические навыки применения основных методов математической статистики для представления и оценки характеристик выборок, для определения законов распределения и проверки простых статистических гипотез о свойствах выборки, а так же для статистического анализа факторных моделей вероятностных экспериментов.

ЗАДАНИЕ:

Процесс обогащения руды.

На обогатительных фабриках происходит отделение частиц металла от пустой породы (после раздробления руды и последующей ее обработки). Одним из показателей качества готовой продукции - концентрата - являются классы крупности Хj (d, мк) частиц металла,  входящих в него.  В результате анализов, проведенных на одной из обогатительных фабрик Зангезурского медно-молибденового рудника, были получены данные по распределениям классов крупности при различных технологических режимах. При этом проходили  испытания нового автоматического прибора (гранулометра), по измерению классов крупности. Точность анализов гранулометра сравнивалась с точностью при традиционных лабораторных способах измерений.

Технология N1, лаб. анализ; N1 =100

Хj

0,63

0,64

0,65

0,67

0,68

0,70

0,73

0,75

0,77

0,79

0,82

0,85

nj

1

3

1

2

8

5

45

15

5

7

3

5

Технология N1, гранулометр; N2 = 95

Хj

0,59

0,63

0,65

0,67

0,70

0,72

0,73

0,75

0,78

0,79

0,85

nj

1

3

1

2

8

5

45

15

5

7

3

Технология N2, лаб. анализ; N3 = 105

Хj

0,62

0,67

0,69

0,72

0,74

0,75

0,79

0,80

0,81

0,85

nj

5

5

10

15

5

45

8

5

2

5

Технология N2, гранулометр; N4 = 100

Хj

0,58

0,64

0,67

0,70

0,72

0,73

0,76

0,79

0,80

0,83

0,89

nj

5

5

3

7

5

10

40

10

5

5

5

Технология N3, гранулометр; N5 = 26

Хj

0,66

0,68

0,70

0,72

0,73

0,74

0,76

0,78

nj

1

2

1

2

5

10

4

1

Технология N3, лаб. анализ; N6 = 28

Хj

0,67

0,68

0,71

0,73

0,74

0,75

0,77

nj

1

1

2

10

8

5

1

Описание задачи статистического анализа (формулировка проблем,  необходимые формулы, соответствующие варианту задания).

Объем выборки:

Среднее арифметическое:

Характеристики выборки:

Показатели положения:

Оценкой мат ожидания является выборочное среднее:

Выборочная дисперсия:

Улучшенная выборочная дисперсия:

Минимальный элемент: 

Максимальный элемент: 

Размах выборки:   

Центральный момент выборки четвертого порядка:

Коэффициент эксцесса:  

Показатели симметрии:

Центральный момент выборки третьего порядка:  

Коэффициент ассиметрии:  

2.Расчетная часть

Вычисленные характеристики заданных выборок:

Технология

N

M

Dv

S2

v 

Wx

m4, 10-4

Ev

m3, 10-3

as

N1

100

0.737

0.002

0.002

0.045

0.22

0.16

0.894

-0.139

0.37

N2

100

0.748

0.004

0.004

0.064

0.31

0.71

1.204

0.034

-0.525

N3

28

0.733

0.0004

0.0004

0.02

0.1

0.09

2.846

-0.012

-1.483

число интервалов: для N1 mx=7

для N2 mx=6

  для N3 mx=4

Шаг интервала:  

Для N1 D=0.031 

Для N2  D=0.051667 

Для N2  D=0.025 

Гистограммы

 

Сгруппированные статистические ряды представлены гистограммами    

Технология N1:

    

ph -  выборочная функция плотности

Технология N2

Технология N3

эмпирическая функция распределения

Эмпирическая функция распределения не дает четких представлений о распределении выборки, поэтому далее мы ее рассматривать не будем.

Предварительные выводы:

По полученным результатам можно предположить, что исследуемая случайна величина

распределена по нормальному закону. Такой вывод можно сделать по гистограмме и эмпирической функции распределения. Далее следует проверить гипотезу о нормальности распределения.

Предположим, что случайная величина Х - класс крупности частиц металла имеет нормальный закон распределения. Неизвестные математическое ожидание m и дисперсию s нормального закона заменим точечными оценками: m заменим средней выборочной Xv, s заменим оценкой, равной S2.

 

Из теории известно, что оценка математического ожидания, равная выборочному среднему, является состоятельной, несмещенной и эффективной.

Проверка гипотезы о нормальности распределения выборки

Выдвигаем гипотезу Н0 о нормальности распределения, которая  будет проверяться критерием Колмогорова

Н1 – альтернативная гипотеза

Ui= (xi-m(X))/s   

F(xi)=i/N  , где    i -  кол-во значений, меньших текущего

F(x,Q)  - функция распределения Ф(х)

i =  F(xi)  -  F(x,Q)  

Значение квантиля функции распределения Колмогорова при заданном уровне значимости 

Значение  критериальной статистики  Колмогорова

Tкр=0.463333

Критерий Коши:     0.95  >  Tkр

Технология

0.95

Tkр

Гипотеза Н0

N1

1.36

0.463333

Принимается

N2

1.36

1.196182

Принимается

N3

1.36

1.196391

Принимается

Вывод: на основании проверенной гипотезы можно сказать, что выборка имеет нормальное распределение с параметрами N(, )  

Построение графика функции плотности распределения при условии нормального распределения:     (технология №1, лаб. анализ)

 

Построение графика функции плотности распределения при условии нормального распределения:     (технологи №2, гранулометр)

Построение графика функции плотности распределения при условии нормального распределения:     (технология №3, лаб. анализ)

Проверка гипотез об оценках параметров распределения.

Интервальная оценка математического ожидания:

левая граница доверительного интервала mn

  

   

правая граница доверительного интервала  mv

 

Технология

1

2

m

mn1 : mv1

mn2 : mv2

N1

0.05

0.025

0.737

0.73 : 0.75

0.73 : 0.75

N2

0.05

0.025

0.748

0.74 : 0.76

0.73 : 0.76

N3

0.05

0.025

0.733

0.72 : 0.74

0.72 : 0.74

Доверительный интервал покрывает  оценку мат. ожидания: нет оснований отклонить гипотезу Но.

Интервальная оценка среднего квадратичного отклонения:

     

   

Технология

1

2

n1 : v1

n2 : v2

N1

0.05

0.025

0.05

0.03 : 0.06

0.03 : 0.06

N2

0.05

0.025

0.06

0.05 : 0.09

0.05 : 0.09

N3

0.05

0.025

0.02

0.01 : 0.04

0.01 : 0.04

Доверительный интервал покрывает  оценку средне - квадратичного отклонения: нет оснований отклонить гипотезу Но.

 

Проверка гипотез о равенстве мат. ожиданий и дисперсий.

1.Сравнение дисперсий технологий N1 – N3

 

H0

H1

F

F1

F2

Гипотеза

S12= S22

S12 != S22

0.5

1.486

1.574

H0

S12= S32

S12 > S32

5

1.743

1.946

H1

S22= S32

S22 > S32

10

1.743

1.946

H1

  1.  Сравнение математических ожиданий

 - гипотетическая генеральная средняя

 

H0

H1

T

T1

T2

Гипотеза

m1 = m0

m1 != m0

0.671

1.984

2.276

H0

m2 = m0

m1 != m0

1.265

1.984

2.276

H0

m3 = m0

m1 != m0

1.852

2.052

2.373

H0

Выводы: 

На основании построенных диаграмм и проверенных гипотез о: нормальности распределения, которое проверяется критерием Колмогорова, интервальной оценке мат. ожиданий и дисперсий, равенстве мат. ожиданий и дисперсий можно сделать вывод, что:

1)технологии отличаются между собой несущественно;

2)все технологии удовлетворяют ГОСТу, но технология N3 наилучшим образом удовлетворяет ГОСТу на классы крупности: d [0,64; 0,84]  = 0,74;

3)испытания гранулометра нельзя считать успешными, т.к. при измерениях, снятых с помощью гранулометра наблюдается наибольшее отклонение от стандарта

PAGE  12


 

А также другие работы, которые могут Вас заинтересовать

682. Правонарушения. Понятия и виды правонарушения. Состав правонарушения. 97.5 KB
  Понятие правонарушения, его социологические и юридические признаки. Трудовые правонарушения по поводу выполнения трудового законодательства. В своей работе я последовательно рассмотрю понятие содержания правонарушения, начав с социологического определения и признаков, и подчеркну юридическое понятие и его составляющие. Также я детально изучу виды правонарушения, дав подробную. характеристику преступлению и проступку.
683. Исследование сетей Frame Relay 104.5 KB
  В ходе лабораторной ознакомились с сетями Frame Relay. Определили структуру сети Frame Relay согласно модели OSI Изучили связь структуры модели с назначением сети Frame Relay и областью ее применения, формат пакета канального уровня, методы достижения в сетях Frame Relay более высокой скорости, методы обеспечения безошибочной передачи в сетях Frame Relay, применение Frame Relay.
684. Информационные поисковые языки 101 KB
  Свойства информационных поисковых языков. Классификационные информационно–поисковые языки. Сопоставительный анализ информационно–поисковых языков. Обеспечения взаимодействия между различными (информационными, библиотечными и другими) системами.
685. Источники и субъекты налогового права. 104 KB
  Понятие и классификация субъектов налогового права. Правовой статус налогоплательщиков и плательщиков сборов, налоговых представителей. Банки как субъекты налогового права. Общая характеристика источников налогового права.
686. Разработка технологического процесса изготовления детали 100 KB
  Расчет режимов обработки и основного (машинного) времени. Выбор технологического оборудования и технологической оснастки. Определение припусков и операционных размеров. Разработка маршрутно-технологического процесса. Выбор вида заготовки и способа ее получения.
687. Нормализация условий труда при выполнении работы по приготовлению питательных сред для культуры бактерий Gluconacetobacter xylinus и последующий ее посев 74.5 KB
  Источники и причины проявления факторов опасного и вредного воздействия. Приготовление жидкой питательной среды на основе дрожжевого экстракта и глюкозы. Средства труда и технология выполняемой работы. Факторы опасного и вредного действия. Оценка класса и степени вредности условий труда.
688. Полупроводниковый диод 235 KB
  В данной расчетно-графической работе описываются параметры и характеристики диода Д18. В работе представлены характеристики диода, его паспортные параметры, рисунок конструкции, семейство ВАХ. Также имеются расчеты и графики зависимостей некоторых параметров.
689. Финансовый менеджмент, его основы и содержание 117 KB
  Сущность и функции финансов предприятий. Зарождение и эволюция финансового менеджмента. Финансовый механизм предприятия. Сущность, цель и задачи финансового менеджмента. Функциональное содержание финансового менеджмента.
690. Экспрессия гена. Трансляция 114.5 KB
  Регуляция экспрессии генов на уровне транскрипции у прокариот. Основные положения процесса экспрессии генов. Инициация у эукариот. Некоторые общие особенности процесса трансляции. Аппарат экспрессии генов и его логика.