83620

Расчет искусственного освещения методом коэффициента использования

Доклад

Энергетика

1 где Е заданная минимальная освещенность лк; Кзап коэффициент запаса; коэффициент минимальной освещенности приближенно можно принимать z = 11 – для люминесцентных ламп z = 115 – для ламп накаливания и ДРЛ; S – освещаемая площадь м2; Еср средняя освещенность лк; N – число светильников намечается до расчета – коэффициент использования светового потока источника света доли единиц. Если такое приближение не реализуется то корректируется число светильников. Если световой поток ламп в каждом светильнике составляет...

Русский

2015-03-15

43.18 KB

5 чел.

Расчет искусственного освещения методом коэффициента использования.

Расчёт искусственного освещения методом удельной мощности

Расчет искусственного освещения методом коэффициента использования

Метод коэффициента использования светового потока служит для определения средней освещенности, и при расчете по этому методу минимальная освещенность оценивается лишь относительно и без выявления точек, в которых она имеет место. Применение метода коэффициента использования целесообразно для расчета общего равномерного освещения горизонтальных поверхностей при отсутствии затенений, требующих учета. Наиболее полно инженерные методы расчета освещенности представлены в работах Г. М. Кнорринга [3].

Метод коэффициента использования. При расчетах методом коэффициента использования необходимый световой поток каждого осветительного прибора определяется по формуле         ,        (7.1)             

где Е - заданная минимальная освещенность, лк; Кзап - коэффициент запаса;

коэффициент минимальной освещенности (приближенно можно принимать z = 1,1 – для люминесцентных ламп, z = 1,15 – для ламп накаливания и ДРЛ); S – освещаемая площадь, м2; Еср - средняя освещенность, лк; N – число светильников (намечается до расчета),  – коэффициент использования светового потока источника света, доли единиц.

По найденному значению  выбирается ближайшая стандартная лампа в пределах допуска – 10  + 20 %. Если такое приближение не реализуется, то корректируется число светильников.

При расчете освещения выполненного люминесцентными лампами, чаще всего первоначально намечается число рядов n, которое в формуле 7.1 соответствует величине N. Тогда под  следует понимать поток ламп одного ряда. Если световой поток ламп в каждом светильнике составляет ном, то число светильников в ряду определяется по формуле:

                                                 (7.2)

Суммарная длина  светильников сопоставляется с длиной помещения, при этом возможны следующие случаи:

1) суммарная длина светильников в ряду превышает длину помещения. В этом случае необходимо применить более мощные лампы  или увеличить число рядов, можно компоновать ряды из сдвоенных, строенных светильников;

2) суммарная длина светильников равна длине помещения: устанавливается непрерывный ряд светильников;

3) суммарная длина ряда меньше длины помещения: принимается ряд с равномерно распределенными вдоль него разрывами между светильниками. Рекомендуется, чтобы расстояние между светильниками в ряду l не превышало 0,5 h.

Расчёт искусственного освещения методом удельной мощности

Достоинство данного метода расчета искусственного освещения состоит в простоте, а слабая сторона – в недостаточной точности. Потому эта техника применяется при первичных расчетах. Суть подобного расчета искусственного освещения сводится к определению количества светильников того или иного типа с помощью таблиц удельных мощностей. Таблицы удельной мощности составлены с применением конкретных параметров, при освещении лампами накаливания к ним относятся:

- тип светильников;

- освещенность;

- коэффициент запаса (при его значениях, отличающихся от указанных в таблицах, допускается пропорциональный пересчет значений удельной мощности);

- коэффициенты отражений поверхностей помещения ( табл. 4 приложения) (для светильников прямого света таблицы рассчитаны" для п = 50 %; с = 30 %; р = 10 % и для них допускается при более светлых поверхностях уменьшать, а при более темных - увеличивать значения w на 10 %);

- значения расчетной высоты;

- площадь помещения.

Удельной установленной мощностью называют частное от деления общей установленной в помещении мощности ламп на площадь помещения:

pуд = (Pл х n) / S,

где pуд - удельная установленная мощность, Вт/м2, - мощность лампы, Вт; n- число ламп в помещении; S — площадь помещения, м2.

Удельная мощность - это справочное значение. Для того, что бы правильно выбрать величину удельной мощности необходимо знать тип светильников, нормированную освещенность, коэффициент запаса (при его значениях, отличающихся от указанных в таблицах, допускается пропорциональный пересчет значений удельной мощности), коэффициенты отражения поверхностей помещения, значения расчетной высоты и площадь помещения. Расчетное уравнение для определения мощноcти одной лампы:

Pл = (pуд х S) / n

Таком образом, с помощью данной формулы расчета искусственного освещения можно определить количество светильников, которое необходимо для освещения данной площади и электрическую мощность приборов.


 

А также другие работы, которые могут Вас заинтересовать

22522. Пределы применимости формулы Эйлера 141 KB
  Для стали 3 предел пропорциональности может быть принят равным поэтому для стержней из этого материала можно пользоваться формулой Эйлера лишь при гибкости т. Теоретическое решение полученное Эйлером оказалось применимым на практике лишь для очень ограниченной категории стержней а именно тонких и длинных с большой гибкостью. Попытки использовать формулу Эйлера для вычисления критических напряжений и проверки устойчивости при малых гибкостях вели иногда к весьма серьезным катастрофам да и опыты над сжатием стержней показывают что...
22523. Прочность при циклически изменяющихся напряжениях 149.5 KB
  Так например ось вагона вращающаяся вместе с колесами рис. Рис. Для оси вагона на рис. В точке А поперечного сечения рис.
22524. Диаграмма усталостной прочности 60.5 KB
  Диаграмма усталостной прочности. Эта кривая носит название диаграммы усталостной прочности рис. Точки А к С диаграммы соответствуют пределам прочности. Полученная диаграмма дает возможность судить о прочности конструкции работающей при циклически изменяющихся напряжениях.
22525. Расчет коэффициентов запаса усталостной прочности 147.5 KB
  Одним из основных факторов которые необходимо учитывать при практических расчетах на усталостную прочность является фактор местных напряжений. Очаги концентрации местных напряжений: Многочисленные теоретические и экспериментальные исследования показывают что в области резких изменений в форме упругого тела входящие углы отверстия выточки а также в зоне контакта деталей возникают повышенные напряжения с ограниченной зоной распространения так называемые местные напряжения. 1 а закон равномерного распределения напряжений вблизи...
22526. Основы вибропрочности конструкций 155.5 KB
  Если период вынужденных колебаний совпадет с периодом свободных колебаний стержня то мы получим явление резонанса при котором амплитуда размах колебаний будет резко расти с течением времени. Так как период раскачивающих возмущающих сил обычно является заданным то в распоряжении проектировщика остается лишь период собственных свободных колебаний конструкции который надо подобрать так чтобы он в должной мере отличался от периода изменений возмущающей силы. Вопросы связанные с определением периода частоты и амплитуды свободных и...
22527. Расчет динамического коэффициента при ударной нагрузке 140.5 KB
  Скорость ударяющего тела за очень короткий промежуток времени изменяется и в частном случае падает до нуля; тело останавливается. передается реакция равная произведению массы ударяющего тела на это ускорение. Обозначая это ускорение через а можно написать что реакция где Q вес ударяющего тела. Эти силы и вызывают напряжения в обоих телах.
22528. Сопротивление материалов. Введение и основные понятия 40.5 KB
  Прочность – это способность конструкции выдерживать заданную нагрузку не разрушаясь. Жесткость – способность конструкции к деформированию в соответствие с заданным нормативным регламентом. Деформирование – свойство конструкции изменять свои геометрические размеры и форму под действием внешних сил Устойчивость – свойство конструкции сохранять при действии внешних сил заданную форму равновесия. Надежность – свойство конструкции выполнять заданные функции сохраняя свои эксплуатационные показатели в определенных нормативных пределах в течение...
22529. Метод сечений для определения внутренних усилий 92.5 KB
  Метод сечений для определения внутренних усилий Деформации рассматриваемого тела элементов конструкции возникают от приложения внешней силы. Внутренние усилия – это количественная мера взаимодействия двух частей одного тела расположенных по разные стороны сечения и вызванные действием внешних усилий. Здесь {S’} и {S } внутренние усилия возникающих соответственно в левой и правой отсеченных частях вследствие действия внешних усилий. Используя общую методологию теоремы Пуансо о приведении произвольной системы сил к заданному центру и...
22530. Эпюры внутренних усилий при растяжении-сжатии и кручении 48.5 KB
  Рассмотрим расчетную схему бруса постоянного поперечного сечения с заданной внешней сосредоточенной нагрузкой Р и распределенной q рис. а расчетная схема б первый участок левая отсеченная часть в второй участок левая отсеченная часть г второй участок правая отсеченная часть д эпюра нормальных сил Рис. В пределах первого участка мысленно рассечем брус на 2 части нормальным сечением и рассмотрим равновесие допустим левой части введя следующую координату х1 рис. Мысленно рассечем его сечением 2 2 и рассмотрим равновесие левой...