83620

Расчет искусственного освещения методом коэффициента использования

Доклад

Энергетика

1 где Е заданная минимальная освещенность лк; Кзап коэффициент запаса; коэффициент минимальной освещенности приближенно можно принимать z = 11 для люминесцентных ламп z = 115 для ламп накаливания и ДРЛ; S освещаемая площадь м2; Еср средняя освещенность лк; N число светильников намечается до расчета коэффициент использования светового потока источника света доли единиц. Если такое приближение не реализуется то корректируется число светильников. Если световой поток ламп в каждом светильнике составляет...

Русский

2015-03-15

43.18 KB

5 чел.

Расчет искусственного освещения методом коэффициента использования.

Расчёт искусственного освещения методом удельной мощности

Расчет искусственного освещения методом коэффициента использования

Метод коэффициента использования светового потока служит для определения средней освещенности, и при расчете по этому методу минимальная освещенность оценивается лишь относительно и без выявления точек, в которых она имеет место. Применение метода коэффициента использования целесообразно для расчета общего равномерного освещения горизонтальных поверхностей при отсутствии затенений, требующих учета. Наиболее полно инженерные методы расчета освещенности представлены в работах Г. М. Кнорринга [3].

Метод коэффициента использования. При расчетах методом коэффициента использования необходимый световой поток каждого осветительного прибора определяется по формуле         ,        (7.1)             

где Е - заданная минимальная освещенность, лк; Кзап - коэффициент запаса;

коэффициент минимальной освещенности (приближенно можно принимать z = 1,1 – для люминесцентных ламп, z = 1,15 – для ламп накаливания и ДРЛ); S – освещаемая площадь, м2; Еср - средняя освещенность, лк; N – число светильников (намечается до расчета),  – коэффициент использования светового потока источника света, доли единиц.

По найденному значению  выбирается ближайшая стандартная лампа в пределах допуска – 10  + 20 %. Если такое приближение не реализуется, то корректируется число светильников.

При расчете освещения выполненного люминесцентными лампами, чаще всего первоначально намечается число рядов n, которое в формуле 7.1 соответствует величине N. Тогда под  следует понимать поток ламп одного ряда. Если световой поток ламп в каждом светильнике составляет ном, то число светильников в ряду определяется по формуле:

                                                 (7.2)

Суммарная длина  светильников сопоставляется с длиной помещения, при этом возможны следующие случаи:

1) суммарная длина светильников в ряду превышает длину помещения. В этом случае необходимо применить более мощные лампы  или увеличить число рядов, можно компоновать ряды из сдвоенных, строенных светильников;

2) суммарная длина светильников равна длине помещения: устанавливается непрерывный ряд светильников;

3) суммарная длина ряда меньше длины помещения: принимается ряд с равномерно распределенными вдоль него разрывами между светильниками. Рекомендуется, чтобы расстояние между светильниками в ряду l не превышало 0,5 h.

Расчёт искусственного освещения методом удельной мощности

Достоинство данного метода расчета искусственного освещения состоит в простоте, а слабая сторона – в недостаточной точности. Потому эта техника применяется при первичных расчетах. Суть подобного расчета искусственного освещения сводится к определению количества светильников того или иного типа с помощью таблиц удельных мощностей. Таблицы удельной мощности составлены с применением конкретных параметров, при освещении лампами накаливания к ним относятся:

- тип светильников;

- освещенность;

- коэффициент запаса (при его значениях, отличающихся от указанных в таблицах, допускается пропорциональный пересчет значений удельной мощности);

- коэффициенты отражений поверхностей помещения ( табл. 4 приложения) (для светильников прямого света таблицы рассчитаны" для п = 50 %; с = 30 %; р = 10 % и для них допускается при более светлых поверхностях уменьшать, а при более темных - увеличивать значения w на 10 %);

- значения расчетной высоты;

- площадь помещения.

Удельной установленной мощностью называют частное от деления общей установленной в помещении мощности ламп на площадь помещения:

pуд = (Pл х n) / S,

где pуд - удельная установленная мощность, Вт/м2, - мощность лампы, Вт; n- число ламп в помещении; S — площадь помещения, м2.

Удельная мощность - это справочное значение. Для того, что бы правильно выбрать величину удельной мощности необходимо знать тип светильников, нормированную освещенность, коэффициент запаса (при его значениях, отличающихся от указанных в таблицах, допускается пропорциональный пересчет значений удельной мощности), коэффициенты отражения поверхностей помещения, значения расчетной высоты и площадь помещения. Расчетное уравнение для определения мощноcти одной лампы:

Pл = (pуд х S) / n

Таком образом, с помощью данной формулы расчета искусственного освещения можно определить количество светильников, которое необходимо для освещения данной площади и электрическую мощность приборов.


 

А также другие работы, которые могут Вас заинтересовать

83659. Анализ цепей с индуктивно связанными элементами 150 KB
  Такие элементы могут связывать цепи электрически гальванически разделенные друг от друга. В том случае когда изменение тока в одном из элементов цепи приводит к появлению ЭДС в другом элементе цепи говорят что эти два элемента индуктивно связаны а возникающую ЭДС называют ЭДС взаимной индукции. Степень индуктивной связи элементов характеризуется коэффициентом связи 1 где М взаимная индуктивность элементов цепи размерность Гн; и собственные индуктивности этих элементов.
83660. Особенности составления матричных уравнений при наличии индуктивных связей и ветвей с идеальными источниками 118 KB
  В общем случае разветвленной цепи со взаимной индукцией матрица сопротивлений ветвей имеет вид Z . Здесь элементы главной диагонали комплексные сопротивления ветвей схемы; элементы вне главной диагонали комплексные сопротивления индуктивной связи i й и k й ветвей знак ставится при одинаковой ориентации ветвей относительно одноименных зажимов в противном случае ставится...
83661. Методы расчета, основанные на свойствах линейных цепей 165.5 KB
  Метод наложения Данный метод справедлив только для линейных электрических цепей и является особенно эффективным когда требуется вычислить токи для различных значений ЭДС и токов источников в то время как сопротивления схемы остаются неизменными. Аналитически принцип наложения для цепи содержащей n источников ЭДС и m источников тока выражается соотношением . 1 Здесь комплекс входной проводимости k й ветви численно равный отношению тока к ЭДС в этой ветви при равных нулю ЭДС в остальных ветвях; комплекс взаимной ...
83662. Метод эквивалентного генератора 123.5 KB
  как сумму двух составляющих одна из которых вызывается источниками входящими в структуру активного двухполюсника и источником ЭДС расположенным между зажимами 1 и 2 слева а другая источником ЭДС расположенным между зажимами 1 и 2 справа. Параметры эквивалентного генератора активного двухполюсника могут быть определены экспериментальным или теоретическим путями. В первом случае в частности на постоянном токе в режиме холостого хода активного двухполюсника замеряют напряжение на его зажимах с помощью вольтметра которое и равно ....
83663. Пассивные четырехполюсники 223.5 KB
  При анализе электрических цепей в задачах исследования взаимосвязи между переменными (токами, напряжениями, мощностями и т.п.) двух каких-то ветвей схемы широко используется теория четырехполюсников. Четырехполюсник – это часть схемы произвольной конфигурации, имеющая две пары зажимов (отсюда и произошло его название), обычно называемые входными и выходными.
83664. Электрические фильтры 146.5 KB
  Качество фильтра считается тем выше чем ярче выражены его фильтрующие свойства т. Классификация фильтров Название фильтра Диапазон пропускаемых частот Низкочастотный фильтр фильтр нижних частот Высокочастотный фильтр фильтр верхних частот Полосовой фильтр полоснопропускающий фильтр Режекторный фильтр полоснозадерживающий фильтр и где В соответствии с материалом изложенным в предыдущей лекции если фильтр имеет нагрузку сопротивление которой при всех частотах равно характеристическому то напряжения и соответственно токи на...
83665. Трехфазные электрические цепи 108.5 KB
  Поэтому в энергетике строго следят за тем чтобы нагрузка генератора оставалась симметричной. Можно было бы использовать систему в которой фазы обмотки генератора не были бы гальванически соединены друг с другом. В этом случае каждую фазу генератора необходимо соединять с приемником двумя проводами т.
83666. Расчет трехфазных цепей 143.5 KB
  Равенство модулей указанных сопротивлений не является достаточным условием симметрии цепи. Если к симметричной трехфазной цепи приложена симметричная трехфазная система напряжений генератора то в ней будет иметь место симметричная система токов. Такой режим работы трехфазной цепи называется симметричным.
83667. Применение векторных диаграмм для анализа несимметричных режимов 159 KB
  При этом будем проводить сопоставление с симметричным режимом работы цепи фазные напряжения и токи в которой будут базовыми. Для этой цепи см. 5 ; при этом сами токи и в силу автономности режима работы фаз при соединении нагрузки в треугольник такие же как и в цепи на рис. и для симметричной трехфазной цепи свойство уравновешенности доказано.