83641

Графические методы анализа переходных процессов в нелинейных цепях

Лекция

Физика

По сравнению с рассмотренными выше аналитическими методами они обладают следующими основными преимуществами: отсутствием принципиальной необходимости в аналитическом выражении характеристики нелинейного элемента что устраняет погрешность связанную с ее аппроксимацией; возможностью проведения расчетов при достаточно сложных формах кривых нелинейных характеристик. Метод фазовой плоскости Метод позволяет осуществлять качественное исследование динамических процессов в нелинейных цепях описываемых дифференциальными уравнениями первого и...

Русский

2015-03-15

196.5 KB

0 чел.

Лекция N 43

Графические методы анализа переходных процессов в нелинейных цепях

Графическими называются  методы, в  основе которых лежат графические построения на плоскости. По сравнению с рассмотренными выше аналитическими методами они обладают следующими основными преимуществами:

- отсутствием принципиальной необходимости в аналитическом выражении характеристики нелинейного элемента, что устраняет погрешность, связанную с ее аппроксимацией;

- возможностью проведения расчетов при достаточно сложных формах кривых нелинейных характеристик.

Главный недостаток графических методов заключается в получении решения для конкретных значений параметров цепи.

Основными графическими методами, используемыми при решении электротехнических задач, являются:

1. Метод  графического  интегрирования

Метод  графического интегрирования основан на графическом подсчете определенного интеграла и заключается в последовательном  нахождении  площадей под соответствующей подынтегральной функции кривой. Он применяется для анализа электрических цепей, переходные процессы в которых описываются дифференциальными уравнениями первого порядка с разделяющимися переменными.

2. Метод изоклин

Данный метод является одним из наиболее широко используемых графических методов приближенного интегрирования. Он непосредственно используется для решения уравнений первого порядка вида    и при этом включает в себя в общем случае следующие этапы:

в плоскости по уравнениям изоклин  (изоклина  - линия равного наклона, вдоль которой функция  имеет постоянное значение, т.е. геометрическое место точек, для которых ) строятся изоклины для различных значений углового коэффициента  ;

вдоль каждой изоклины наносятся черточки с наклоном,  определяемым соответствующим значением  ;

от точки  соответствующей начальному условию, строится интегральная кривая так, чтобы она пересекала каждую изоклину параллельно нанесенным на ней черточкам;  полученная кривая является графиком искомой зависимости 

3. Метод фазовой плоскости

Метод позволяет осуществлять качественное исследование динамических процессов в нелинейных цепях, описываемых дифференциальными уравнениями первого и второго порядков. При этом без непосредственного  интегрирования нелинейных дифференциальных уравнений данный метод дает возможность получить представление о процессе в целом.  В общем случае исследования, проводимые методом фазовой плоскости, позволяют выявить зависимость характера переходного процесса от начальных условий, судить об устойчивости или неустойчивости работы цепи, устанавливать возможность появления в цепи автоколебаний  с оценкой их частоты и формы и т. д. 

Более подробно с графическими методами можно познакомиться в [1,2,3].

 

Численные методы расчета переходных процессов

Численные методы анализа динамических процессов в нелинейных электрических цепях базируются на различных численных способах  приближенного интегрирования нелинейных дифференциальных уравнений. В их основе лежит общий принцип: исходное дифференциальное уравнение заменяется алгебраическим для приращений зависимой (исследуемой) переменной за соответствующие интервалы изменения независимой переменной (времени).

Основным достоинством численных методов является их универсальность, т.е. принципиальная пригодность для анализа любой цепи. Это особенно важно в случае нелинейных цепей, для которых не существует общих аналитических методов расчета.

Применительно к анализу динамических процессов в нелинейных цепях наибольшее распространение получили:

- метод переменных состояния;

- метод дискретных моделей.

 

Метод переменных состояния

Метод переменных состояния, как было показано при анализе переходных процессов в линейных цепях, основывается на составлении и интегрировании дифференциальных уравнений, записанных в нормальной форме. Полная система уравнений в матричной форме имеет вид

.

=

.

(1)

Здесь  и - матрицы переменных состояния и их первых производных по времени соответственно; w(z) – матрица нелинейных резистивных элементов ; z – матрица аргументов нелинейных резистивных элементов ; v – матрица входных воздействий  ( ЭДС и токов источников ) ; y – матрица искомых величин.

При составлении уравнений состояния для относительно несложных цепей они могут быть записаны непосредственно по законам   Кирхгофа.  В общем же случае для этой цели используется или методика, основанная на составлении по специальному алгоритму таблицы соединений, что было показано при рассмотрении метода переменных состояния применительно к расчету линейных цепей, или методика, базирующаяся на принципе наложения.

 

Методика составления уравнений состояния на основе принципа наложения

Данная методика составления уравнений состояния вытекает из разделения исходной цепи на две подсхемы:

- первая включает в себя элементы, запасающие энергию, а также нелинейные   резистивные элементы и источники питания;

-вторая охватывает линейные резистивные элементы.

Пример такого представления исходной цепи приведен на рис. 1,а, где пассивный многополюсник П соответствует второй подсхеме .

Следующий этап рассматриваемой методики заключается в замене на основании теоремы о компенсации всех конденсаторов, а также нелинейных резистивных элементов с характеристикой типа  u(i) источниками   напряжения, а     всех катушек       индуктивности и нелинейных резистивных элементов с характеристикой типа i(u) – источниками тока (рис. 1,б). В результате исходная цепь трансформируется в резистивную, в которой, помимо заданных (независимых) источников, действуют управляемые источники.

 


Рис. 1

На третьем этапе с использованием метода наложения определяются выражения входных токов и напряжений пассивного многополюсника П через напряжения и токи всех присоединенных к нему источников.

В качестве примера составим уравнения состояния для цепи на рис. 2,а и определим выражения  и .


а)

б)

Рис.2

 

1. В соответствии с изложенной методикой заменим исходную цепь схемой замещения на рис. 2,б. На основании метода наложения этой схеме соответствует пять цепей, приведенных на рис. 3. С их использованием для тока =dq/dt  в ветви с конденсатором и напряжения на зажимах  катушки индуктивности запишем

   

(2)

 

  а)  

б)  

в)

г)  

д)


Рис. 3

 

(3)

     2. Выражение для искомого напряжения  определяется согласно закону Ома:

   

 ( 4)

     На основании метода наложения с использованием расчетных схем на рис. 3 для второй искомой переменной – тока  запишем

 

      

( 5)

 

     3. Объединив  (2) (5)  с  учетом , получим    матричное    уравнение     вида (1):

 

=

.

 

Вектор начальных значений     =     .

Сравнивая в заключение рассмотренные методики составления уравнений состояния, можно отметить, что методика, основанная на использовании принципа наложения, не содержит достаточно сложного этапа исключения переменных резистивных ветвей из уравнений состояния, входящего в методику составления уравнений на основе таблицы соединений. Вместе с тем использование метода наложения для сложных цепей может также оказаться весьма трудоемкой задачей.

    

Метод дискретных моделей

Метод основан на использовании дискретных моделей индуктивного и емкостного элементов и позволяет свести численный анализ динамических процессов в нелинейных цепях к последовательному расчету на каждом шаге нелинейных резистивных цепей.

Дискретные модели вытекают из неявных алгоритмов, в частности из обратной формулы Эйлера. Эти модели, полученные на основе неявного алгоритма Эйлера, а также выражения для параметров входящих в них элементов приведены в табл. 1.

 

Таблица 1. Дискретные модели индуктивного и емкостного элементов

 

Тип элемента

Аналитические

соотношения

 Дискретная модель

Индуктивный элемент

Емкостный элемент

где ;

 ;

где ;

;

.

 

Примечание: если емкостный и индуктивный элементы линейные и то  и .

Метод дискретных моделей хорошо поддается машинной алгоритмизации и используется для расчета сложных нелинейных цепей на ЭВМ. Для достаточно простых схем он может быть реализован ’’вручную’’.

Последовательность расчета нелинейной цепи методом дискретных моделей иллюстрируется приведенным ниже примером решения задачи.

В цепи на рис. 3 предыдущей задачи  ЭДС источника Е = 1В; 1Ом; 4 Ом. Вебер - амперная характеристика нелинейной катушки индуктивности аппроксимирована выражением  где ток – в амперах, потокосцепление – в веберах.

Рассчитать ток i в цепи после замыкания ключа

.

Решение

1. Нарисуем расчетную дискретную схему замещения цепи (см. рис. 4).

Для этой схемы справедливо

   

(6)

где в соответствии с табл. 1

 


Значение дифференциальной индуктивности нелинейной катушки на k-м шаге

     

(7)

 

2. Выберем шаг интегрирования  На основании закона коммутации     Тогда  и в соответствии с (7) . Параметры элементов схемы замещения:    откуда на основании (6)

На следующем шаге  тогда  и параметры элементов схемы замещения    откуда

   

Результаты пошагового расчета согласно приведенному алгоритму представлены в табл. 2 .

 

Таблица 2. Результаты расчета

 

с

А

Вб

Гн

Ом

В

А

0

0

0,2

0,585

0,974

0,974

0,195

0,605

1

1

0,605

0,846

0,466

0,466

0,282

0,874

2

2

0,874

0,956

0,365

0,365

0,319

0,966

3

3

0,966

0,989

0,341

0,341

0,329

0,99

4

4

0,99

0,997

0,335

0,335

0,332

0,998

 

Литература

  1.  Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  2.  Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.2. Жуховицкий Б.Я., Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. –М.:Энергия- 1972. –200с.
  3.  Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  4.  Матханов П.Н. Основы анализа электрических цепей. Нелинейные цепи.: Учеб. для студ. электротехн. спец. вузов. 2-е изд., перераб. и доп. –М.: Высш. шк., 1986. –352с.

Контрольные вопросы

  1.  Какие графические методы применяются для расчета переходных процессов в нелинейных цепях? В чем их сущность?
  2.  Какие методики применяются для составления уравнений состояния?
  3.  Сформулируйте этапы составления уравнений состояния на основе принципа наложения.
  4.  В чем заключается сущность метода дискретных моделей?
  5.  Нарисуйте дискретные модели нелинейных индуктивного и емкостного элементов и напишите соответствующие им аналитические соотношения.

294


 

А также другие работы, которые могут Вас заинтересовать

34731. Единицы длины, расстояния и площади в Российской империи 17.9 KB
  Образованной для разработки мероприятий по уточнению мер и организации поверочного дела а также обмеры подлинной линейки начала XVIII в. которой пользовался Петр I свидетельствуют что меры длины в первой половине XVIII в. омимо аршина и сажени в XVIII XIX вв. В XVIII в.
34732. Единицы веса и объема в Российской империи 18.05 KB
  Рассмотрим систему русских мер веса в XVIII в. встречаются следующие меры веса: берковец пуд фунт золотник грен крата и доля. На основе этой системы единиц измерения веса складываются наиболее употребительные наборы гирь.
34733. Обеспечение единства измерений и надзор за мерами и весами в Российской империи 16.29 KB
  в связи с экономическим развитием страны встал вопрос не только о единообразии мер и единой для всей страны системе мер как это было в XVI и XVII вв. Вопрос об основных эталонах оказался непростым так как было неясно какие образцы мер следует взять за основу. Предстояло прежде всего найти основания для установления величин той или иной меры а затем разработать принципы организации поверочного дела.
34734. Введение метрической системы в России. Метрические единицы измерения, принятые в СССР 17.08 KB
  Совет Народных Комиссаров Российской Советской Федеративной Социалистической Республики по указанию В. И. Ленина 11 сентября 1918 г. принял декрет «О введении международной метрической десятичной системы мер и весов». Декрет определял «положить в основание всех измерений, производимых в Российской Социалистической Федеративной Советской Республике...
34735. Историческая генеалогия: история развития, предмет и задачи, смежные дисциплины 13.87 KB
  Лихачева разработавшего научную методику исследования генеалогических источников и Л. Появляются исследования по истории отдельных дворянских родов работы Барсукова Васильчикова. многие отечественные генеалоги оказались за границей и там продолжили свои исследования. генеалогические исследования значительно сокращаются.
34736. Источники по генеалогии дворянства 16 - 17вв.: Государев родословец и Бархатная книга (история создания, структура, содержание) 13.23 KB
  : Государев родословец и Бархатная книга история создания структура содержание Государев родословец История создания: Составлен Разрядным приказом в 1555 1556 году. В XVII веке Государев родословец включён в Бархатную книгу. Структура: 1 часть – государев родословец был составлен при Иване 4; 2 часть – составлена на основе приказов. В Бархатную книгу включены: Государев родословец 1555 1556 состоящий преимущественно из родословных записей Рюриковичей и Гедиминовичей царский княжеские боярские роды а также материалы за вторую...
34738. Ревизские сказки как источник по генеалогии непривилегированных слоев населения 15.76 KB
  Это документы именной переписи податного населения Российской Империи XVIII середины XIX вв. Проведение реформы потребовало организации подушного учета населения. Ревизские сказки являлись поимёнными списками населения в которых указывались имя отчество и фамилия владельца двора его возраст имя и отчество членов семьи с указанием возраста отношение к главе семьи.
34739. Материалы всероссийской переписи населения 1897года как источник по генеалогии непривилегированных слоев населения 13.06 KB
  дают материалы Первой всероссийской переписи населения это прямой массовый статистический учет населения проводимый с целью определения его численности состава и размещения на определенный момент. Первый подробный проект переписи населения был представлен председателем Центрального статистического комитета П. Только почти через 20 лет этот проект был утвержден императором Николаем II согласно Положению о Первой всеобщей переписи населения Российской империи изданному в 1895 г.