83642

Цепи с распределенными параметрами

Лекция

Физика

Однако на практике часто приходится иметь дело с цепями линии электропередачи передачи информации обмотки электрических машин и аппаратов и т. уже при к линии следует подходить как к цепи с распределенными параметрами. Для исследования процессов в цепи с распределенными параметрами другое название длинная линия введем дополнительное условие о равномерности распределения вдоль линии ее параметров: индуктивности сопротивления емкости и проводимости. Уравнения однородной линии в стационарном режиме Под первичными параметрами линии...

Русский

2015-03-15

159.5 KB

0 чел.

Лекция N 44

Цепи с распределенными параметрами

В предыдущих лекциях рассматривались электрические цепи, геометрические размеры которых, а также входящих в них элементов не играли роли, т.е. электрические и магнитные поля были локализованы соответственно в пределах конденсатора и катушки индуктивности, а потери мощности – в резисторе. Однако на практике часто приходится иметь дело с цепями (линии электропередачи, передачи информации, обмотки электрических машин и аппаратов и т.д.), где электромагнитное поле и потери равномерно или неравномерно распределены вдоль всей цепи. В результате напряжения и токи на различных участках даже неразветвленной цепи отличаются друг от друга, т.е. являются функциями двух независимых переменных: времени t и пространственной координаты x. Такие цепи называются цепями с распределенными параметрами. Смысл данного названия заключается в том, что у цепей данного класса каждый бесконечно малый элемент их длины характеризуется сопротивлением, индуктивностью, а между проводами – соответственно емкостью и проводимостью.

Для оценки, к какому типу отнести цепь: с сосредоточенными или распределенными параметрами – следует сравнить ее длину l с длиной электромагнитной волны . Если , т.е. при , и . Для , т.е. уже при  к линии следует подходить как к цепи с распределенными параметрами.

Для исследования процессов в цепи с распределенными параметрами (другое название – длинная линия) введем дополнительное условие о равномерности распределения вдоль линии ее параметров: индуктивности, сопротивления, емкости и проводимости. Такую линию называют однородной. Линию с неравномерным распределением параметров часто можно разбить на однородные участки.

 

Уравнения однородной линии в стационарном режиме

Под первичными параметрами линии будем понимать сопротивление , индуктивность , проводимость  и емкость , отнесенные к единице ее длины. Для получения уравнений однородной линии разобьем ее на отдельные участки бесконечно малой длины  со структурой, показанной на рис. 1.

Пусть напряжение и ток в начале такого элементарного четырехполюсника равны u и i, а в конце соответственно  и .

Разность напряжений в начале и конце участка определяется падением напряжения на резистивном и индуктивном элементах, а изменение тока на участке равно сумме токов утечки и смещения через проводимость и емкость. Таким образом, по законам Кирхгофа

или после сокращения на

;    

(1)

.     

(2)

Теорию цепей с распределенными параметрами в установившихся режимах будем рассматривать для случая синусоидального тока. Тогда полученные соотношения при  можно распространить  и на цепи постоянного тока, а воспользовавшись разложением в ряд Фурье – на линии периодического несинусоидального тока.

Вводя комплексные величины и заменяя  на , на основании (1) и (2) получаем

;

(3)

(4)

где  и  - соответственно комплексные сопротивление и проводимость на единицу длины линии.

Продифференцировав (3) по х и подставив выражение  из (4), запишем

.

Характеристическое уравнение

,

откуда

.

Таким образом,

,

(5)

где  - постоянная распространения;  - коэффициент затухания;  - коэффициент фазы.

Для тока согласно уравнению (3) можно записать

,

(6)

где  - волновое сопротивление.

Волновое сопротивление  и постоянную распространения  называют вторичными параметрами линии, которые характеризуют ее свойства как устройства для передачи энергии или информации.

Определяя  и , на основании (5) запишем

.

(7)

Аналогичное уравнение согласно (6) можно записать для тока.

Слагаемые в правой части соотношения (7) можно трактовать как бегущие волны: первая движется и затухает в направлении возрастания х, вторая – убывания. Действительно, в фиксированный момент времени каждое из слагаемых представляет собой затухающую (вследствие потерь энергии) гармоническую функцию координаты х, а в фиксированной точке – синусоидальную функцию времени.

Волну, движущую от начала линии в сторону возрастания х, называют прямой, а движущуюся от конца линии в направлении убывания х – обратной.

На рис. 2 представлена затухающая синусоида прямой волны для моментов времени  и   . Перемещение волны характеризуется фазовой скоростью. Это скорость перемещения по линии неизменного фазового состояния, т.е. скорость, с которой нужно перемещаться вдоль линии, чтобы наблюдать одну и ту же фазу волны:

.

(8)

Продифференцировав (8) по времени, получим

.

(9)

Длиной волны  называется расстояние между двумя ее ближайшими точками, различающимися по фазе на  рад. В соответствии с данным определением

,

откуда

и с учетом (9)

.

В соответствии с введенными понятиями прямой и обратной волн распределение напряжения вдоль линии в любой момент времени можно трактовать как результат наложения двух волн: прямой и обратной, - перемещающихся вдоль линии с одинаковой фазовой скоростью, но в противоположных направлениях:

,

(10)

где в соответствии с (5)  и .

Представление напряжения в виде суммы прямой и обратной волн согласно (10) означает, что положительные направления напряжения для обеих волн выбраны одинаково: от верхнего провода к нижнему.

Аналогично для тока на основании (6) можно записать

,

(11)

где  и .

Положительные направления прямой и обратной волн тока в соответствии с (11) различны: положительное направление прямой волны совпадает с положительным направлением тока  (от начала к концу линии), а положительное направление обратной волны ему противоположно.

На основании (10) и (11) для прямых и обратных волн напряжения и тока выполняется закон Ома

;

.

 

Рассмотрим теоретически важный случай бесконечно длинной однородной линии.

Бесконечно длинная однородная линия. Согласованный режим работы

В случае бесконечно длинной линии в выражениях (5) и (6) для напряжения и тока слагаемые, содержащие , должны отсутствовать, т.к. стремление  лишает эти составляющие физического смысла. Следовательно, в рассматриваемом случае . Таким образом, в решении уравнений линии бесконечной длины отсутствуют обратные волны тока и напряжения. В соответствии с вышесказанным

;

.

(12)

На основании соотношений (12) можно сделать важный вывод, что для бесконечно длинной линии в любой ее точке, в том числе и на входе, отношение комплексов напряжения и тока есть постоянная величина, равная волновому сопротивлению:

.

Таким образом, если такую линию мысленно рассечь в любом месте и вместо откинутой бесконечно длинной части подключить сопротивление, численно равное волновому, то режим работы оставшегося участка конечной длины не изменится. Отсюда можно сделать два вывода:

Уравнения бесконечно длинной линии распространяются на линию конечной длины, нагруженную на сопротивление, равное волновому. В этом случае также имеют место только прямые волны напряжения и тока.

У линии, нагруженной на волновое сопротивление, входное сопротивление также равно волновому.

Режим работы длинной линии, нагруженной на сопротивление, равное волновому, называется согласованным, а сама линия называется линией с согласованной нагрузкой.

Отметим, что данный режим практически важен для передачи информации, поскольку характеризуется отсутствием отраженных (обратных) волн, обусловливающих помехи.

Согласованная нагрузка полностью поглощает мощность волны, достигшей конца линии. Эта мощность называется натуральной. Поскольку в любом сечении согласованной линии сопротивление равно волновому, угол сдвига  между напряжением и током неизменен. Таким образом, если мощность, получаемая линией от генератора, равна , то мощность в конце линий длиной  в данном случае

,

откуда КПД линии

и затухание

.

Как указывалось при рассмотрении четырехполюсников, единицей затухания является непер, соответствующий затуханию по мощности в  раз, а по напряжению или току – в  раз.

 

Литература

  1.  Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  2.  Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.2. Жуховицкий Б.Я., Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. –М.:Энергия- 1972. –200с.
  3.  Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

Контрольные вопросы и задачи

  1.  В чем заключается разница между цепями с сосредоточенными и распределенными параметрами?
  2.  По какому критерию цепь относят к классу цепей с распределенными или сосредоточенными параметрами?
  3.  Нарисуйте схему замещения длинной линии.
  4.  Объясните понятия прямой и обратной бегущих волн.
  5.  Что такое согласованный режим работы цепи с распределенными параметрами, чем он характеризуется?
  6.  Определить первичные параметры линии, если ее вторичные параметры .

Ответ:    

  1.  Определить по условиям предыдущей задачи КПД линии длиной 200 км, считая, что она нагружена на сопротивление, равное волновому.

Ответ: .

  1.  Определить ,  и  для кабеля, у которого , , если частота .

Ответ: ; ; .

  1.  По условиям предыдущей задачи определить длину волны и ее фазовую скорость.

Ответ:

301


 

А также другие работы, которые могут Вас заинтересовать

77341. Язык программирования 0xfb.L 65.5 KB
  Близится выход С0x новой расширенной версии С которая может стать тем самым инструментом но стандарт С сам по себе очень сложен синтаксис система типов виртуальные методы не все компиляторы поддерживают все возможности поэтому расширение кажется спорным решением. Концепция является результатом развития идей метапрограммирования Lisp Nemerle и сводится к динамическому выстраиванию окружения состоящего из типов переменных и операторов во время компиляции. В процессе компиляции каждое выражение синтаксическая конструкция...
77342. МАНИПУЛЯТОРЫ ДЛЯ СИСТЕМ НАУЧНОЙ ВИЗУАЛИЗАЦИИ 244.5 KB
  И если для средств вывода уже есть такие мощные средства как системы типа Cve стерео очки стерео мониторы и шлемы виртуальной и расширенной реальности то в области средств ввода или манипуляторов таких решений очень мало и не имеют большого распространения. Нами была поставлена задача разработать интерфейс для работы с виртуальными объектами в котором бы учитывались достоинства и недостатки уже существующих манипуляторов и который был бы максимально прост и естественен в использовании. Обзор существующих решений Был проведён критический...
77343. Манипуляция объектами в системах компьютерной визуализации 38.5 KB
  Серьезной задачей в системах визуализации является обеспечение различных действий с визуальными объектами при работе с трехмерной графикой. Как правило, при реализации методов непосредственного манипулирования с визуальными объектами все операции проводятся в основном окне вывода
77344. Математическая и компьютерная модель стимуляции и использования радиочастотной энергии в почечных артериях на симпатические ганглии и пути 198.5 KB
  Электрод для деструкции симпатических ганглиев и путей. Метод деструкции симпатических ганглиев и проводящих путей Цель. Создать модель воздействия стимуляции и радиочастотной энергии на симпатические ганглии и проводящие пути для прогнозирования результата воздействия и сопоставления с клиническими данными для выработки оптимальной процедуры воздействия и достижения максимального успеха вмешательства Задачи Создать модель почечных артерии и ганглиев и проводящих путей вокруг них Создать модель связи между различными режимами...
77345. Методы манипуляций объектами в трёхмерных визуальных средах 220.5 KB
  Использование средств трехмерной графики в том числе базирующихся на средах виртуальной реальности естественно влечёт поиск новых трехмерны средств ввода и построения на их базе новых систем человеко-компьютерного взаимодействия. Вместе с тем возникают проблемы с применением сложных систем ввода в средах визуализации. Причем сложности возникают как с эксплуатацией и непосредственным использованием техники так и с диалоговыми языками ввода и взаимодействия. Наша цель состоит в разработке простых средств ввода в системах...
77346. МЕТОДЫ РАСПРЕДЕЛЁННЫХ ВЫЧИСЛЕНИЙ НА ОСНОВЕ МОДЕЛИ ПОТОКА ДАННЫХ. ПРОТОТИП СИСТЕМЫ 21.5 KB
  Ему необходимо заботиться о распределении вычислительных задач синхронизации обмене данными и так далее. С другой стороны создаются среды для решения определённых классов задач в основном это касается задач для которых применим параллелизм по данным. Методика базируется на понятиях хранилища задач и правил. Задачей называется программа которая во время исполнения считывает данные с определёнными именами из хранилища и в результате своего исполнения формирует новые данные которые записываются в хранилище.