83644

Входное сопротивление длинной линии

Лекция

Физика

В общем случае для линии с произвольной нагрузкой для входного сопротивления можно записать. Полученное выражение показывает что входное сопротивление является функцией параметров линии и ее длины и нагрузки. При этом зависимость входного сопротивления от длины линии т.

Русский

2015-03-15

156 KB

0 чел.

Лекция N 46

Входное сопротивление длинной линии

Входным сопротивлением длинной линии (цепи с распределенными параметрами) называется такое сосредоточенное сопротивление, подключение которого вместо линии к зажимам источника не изменит режим работы последнего.

В общем случае для линии с произвольной нагрузкой  для входного сопротивления можно записать

.  

(1)

Полученное выражение показывает, что входное сопротивление является функцией параметров линии  и , ее длины  и нагрузки . При этом зависимость входного сопротивления от длины линии, т.е. функция , не является монотонной, а носит колебательный характер, обусловленный влиянием обратной (отраженной) волны. С ростом длины линии как прямая, так соответственно и отраженная волны затухают все сильнее. В результате влияние последней ослабевает и амплитуда колебаний функции  уменьшается. При согласованной нагрузке, т.е. при , как было показано ранее, обратная волна отсутствует, что полностью соответствует выражению (1), которое при  трансформируется в соотношение

.

Такой же величиной определяется входное сопротивление при .

При некоторых значениях длины линии ее входное сопротивление может оказаться чисто активным. Длину линии, при которой  вещественно, называют резонансной. Как и в цепи с сосредоточенными параметрами, резонанс наиболее ярко наблюдается при отсутствии потерь. Для линии без потерь на основании (1) можно записать

.      

(2)

Из (2) для режимов холостого хода (ХХ) и короткого замыкания (КЗ), т.е. случаев, когда потребляемая нагрузкой активная мощность равна нулю, соответственно получаем:

;

(3)

.

(4)

Исследование характера изменения  в зависимости от длины  линии на основании (3) показывает, что при    по модулю изменяется в пределах  и имеет емкостный характер, а при  - в пределах  и имеет индуктивный характер. Такое чередование продолжается и далее через отрезки длины линии, равные четверти длины волны (см. рис. 1,а).

В соответствии с (4) аналогичный характер, но со сдвигом на четверть волны, будет иметь зависимость  при КЗ (см. рис. 1,б).

 

Точки, где , соответствуют резонансу напряжений, а точки, где , - резонансу токов.

Таким образом, изменяя длину линии без потерь, можно имитировать емкостное и индуктивное сопротивления любой величины. Поскольку длина волны  есть функция частоты, то аналогичное изменение  можно обеспечить не изменением длины линии, а частоты генератора. При некоторых частотах входное сопротивление цепи с распределенными параметрами также становится вещественным. Такие частоты называются резонансными. Таким образом, резонансными называются частоты, при которых в линии укладывается целое число четвертей волны.

 

Переходные процессы в цепях с распределенными параметрами

Переходные процессы в цепях с распределенными параметрами имеют характер блуждающих волн, распространяющихся по цепи в различных направлениях. Эти волны могут претерпевать многократные отражения от стыков различных линий, от узловых точек включения нагрузки и т.д. В результате наложения этих волн картина процессов в цепи может оказаться достаточно сложной. При этом могут возникнуть сверхтоки и перенапряжения, опасные для оборудования.

Переходные процессы в цепях с распределенными параметрами возникают при различных изменениях режимов их работы: включении-отключении нагрузки, источников энергии, подключении новых участков линии и т.д. Причиной переходных процессов в длинных линиях могут служить грозовые разряды.

 

Уравнения переходных процессов в цепях с распределенными параметрами

При рассмотрении схемы замещения цепи с распределенными параметрами были получены дифференциальные уравнения в частных производных

(5)

(6)

Их интегрирование с учетом потерь представляет собой достаточно сложную задачу. В этой связи будем считать цепь линией без потерь, т.е. положим  и . Такое допущение возможно для линий с малыми потерями, а также при анализе начальных стадий переходных процессов, часто наиболее значимых в отношении перенапряжений и сверхтоков.

С учетом указанного от соотношений (5) и (6) переходим к уравнениям

  

(7)

 

(8)

Для получения уравнения (7) относительно одной переменной продифференцируем (7) по х, а (8) – по t:

(9)

.

(10)

Учитывая, что для линии без потерь , после подстановки соотношения (10) в (9) получим

(11)

Аналогично получается уравнение для тока

(12)

Волновым уравнениям (11) и (12) удовлетворяют решения

;

.

Как и ранее, прямые и обратные волны напряжения и тока связаны между собой законом Ома для волн

  и  ,

где .

При расчете переходных процессов следует помнить:

  1.  В любой момент времени напряжение и ток в любой точке линии рассматриваются как результат наложения прямой и обратной волн этих переменных на соответствующие величины предшествующего режима.
  2.  Всякое изменение режима работы цепи с распределенными параметрами обусловливает появление новых волн, накладываемых на существующий режим.
  3.  Для каждой волны в отдельности выполняется закон Ома для волн.

Как указывалось, переходный процесс в цепях с распределенными параметрами характеризуется наложением многократно отраженных волн. Рассмотрим многократные отражения для двух наиболее характерных случаев: подключение источника постоянного напряжения к разомкнутой и короткозамкнутой линии.

 

Переходные процессы при включении на постоянное напряжение
разомкнутой и замкнутой на конце линии

При замыкании рубильника (см. рис. 2) напряжение в начале линии сразу же

достигает величины , и возникают прямые волны прямоугольной формы напряжения  и тока , перемещающиеся вдоль линии со скоростью V (см. рис. 3,а).Во всех точках линии, до которых волна еще не дошла, напряжение и ток равны нулю.Точка, ограничивающая участок линии, до которого дошла волна, называется фронтом волны. В рассматриваемом случае во всех точках линии, пройденных фронтом волны, напряжение равно , а ток - .

Отметим, что в реальных условиях форма волны, зависящая от внутреннего сопротивления источника, параметров линии и т.п., всегда в большей или меньшей степени отличается от  прямоугольной.

Кроме того, при подключении к линии источника с другим законом изменения напряжения форма волны будет иной. Например, при экспоненциальном характере изменения напряжения источника (рис. 4,а) волна будет иметь форму на рис. 4,б.

В рассматриваемом примере с прямоугольной волной напряжения при первом пробеге волны напряжения и тока (см. рис. 3,а) независимо от нагрузки имеют значения соответственно  и , что связано с тем, что волны еще не дошли до конца линии, и, следовательно, условия в конце линии не могут влиять на процесс.

В момент времени  волны напряжения и тока доходят до конца линии длиной l, и нарушение однородности обусловливает появление обратных (отраженных) волн. Поскольку в конце линия разомкнута, то

,

откуда  и .

В результате (см. рис. 3,б) напряжение в линии, куда дошел фронт волны, удваивается, а ток спадает до нуля.

В момент времени , обратная волна напряжения, обусловливающая в линии напряжение , приходит к источнику, поддерживающему напряжение . В результате возникает волна напряжения  и соответствующая волне тока  (см. рис. 3,в).

В момент времени  волны напряжения и тока подойдут к концу линии. В связи с ХХ  и  (см. рис. 3,г). Когда эти волны достигнут начала линии, напряжение и ток в ней окажутся равными нулю. Следовательно, с этого момента переходный процесс будет повторяться с периодичностью .

В случае короткозамкнутой на конце линии в интервале времени  картина процесса соответствует рассмотренной выше. При , поскольку в конце линии  и , что приведет к возрастанию тока в линии за фронтом волны до величины . При  от источника к концу линии будет двигаться волна напряжения  и соответствующая ей волна тока , обусловливающая ток в линии, равный , и т. д. Таким образом, при каждом пробеге волны ток в линии возрастает на .

Отметим, что в реальном случае, т.е. при наличии потерь мощности, напряжение в линии в режиме ХХ постепенно выйдет на уровень, определяемый  напряжением источника, а ток в режиме КЗ ограничится активным сопротивлением и проводимостью линии, а также внутренним сопротивлением источника.

 

Литература

  1.  Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  2.  Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.2. Жуховицкий Б.Я., Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. –М.:Энергия- 1972. –200с.
  3.  Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

Контрольные вопросы и задачи

  1.  Какой характер имеет зависимость входного сопротивления линии от ее длины и почему?
  2.  С помощью чего можно изменять характер и величину входного сопротивления цепи с распределенными параметрами?
  3.  Какое допущение лежит в основе анализа переходных процессов в длинных линиях?
  4.  Каким законом связаны волны напряжения и тока в переходных режимах?
  5.  Линия без потерь имеет длину , фазовая скорость волны . При каких частотах в ней будут иметь место минимумы и максимумы входного сопротивления?

Ответ: .

  1.  При каких длинах линии без потерь в ней будут наблюдаться резонансные явления, если фазовая скорость равна скорости света, а частота ?

Ответ: .

  1.  Постройте эпюры распределения напряжения и тока вдоль линии, питаемой от источника постоянного напряжения, при включении и отключении в ее конце резистивной нагрузки.

314


 

А также другие работы, которые могут Вас заинтересовать

29182. Судебно-исследовательская фотография 30.5 KB
  Сфера применения тексты которые залиты например кровью зачёркнуты или произошло наложение одного цвета на другой. Основное правило использования светофильтров: 1 для ослабления яркости необходимо использовать светофильтр того же цвета который необходимо погасить 2 для усиления яркости необходимо использовать светофильтр дополнительного цвета. Существует круг Освальда который позволяет визуально наглядно увидеть какой цвет для какого является дополнительным например: для жёлтого цвета дополнительным является оранжевый для...
29183. Виды криминалистической съемки 29 KB
  Обзорная съёмка Обзорная съёмка это фиксация общего вида самого места происшествия. Технические способы обзорной съёмки: метрическая съёмка с глубинным и квадратным масштабом. 3 узловая съёмка Узловая съёмка это фиксация наиболее значимых и важных объектов узлов.
29184. Опознавательная съёмка (сигналитическая фотография) 28 KB
  Однако если у человека на левой стороне лица есть какиелибо отличительные особенности то делается снимок левого профиля. В криминалистической практике часто делаются также снимок в полный рост и снимок левого полупрофиля это поворот головы вправо на 3 4. 3 снимок делается в 1 7 натуральной величины Для этого при печати добиваются того чтобы расстояние между зрачками глаз было равно 1 см.
29185. Понятие трасологии 28 KB
  Один из центральных разделов криминалистической техники в котором изучаются теоретические основы и закономерности возникновения следов разрабатываются рекомендации по применению средств и методов обнаружения изъятия и исследования следов. Трасология отрасль криминалистической техники которая изучает закономерности образования следов отображений и разрабатывает средства приемы и методы обнаружения изъятия фиксации и исследования этих следов в целях использования их для раскрытия расследования и предупреждения преступлений. Задачи...
29186. Способы фиксации следов рук 34 KB
  Протокол осмотра места происшествия должен содержать следующую информацию: 1 описание объекта на котором обнаружен след: наименование объекта форма размер цвет объекта характер поверхности объекта гладкая шероховатая 2 место нахождения следа на этом объекте Должны быть выбраны два постоянных ориентира нужно выделить верхнюю и нижнюю части объекта правую и левую сторону. 3 описание самого следа след нужно назвать Главное требование к протоколу объективность = вместо формулировки найден след пальца руки целесообразнее...
29187. Понятие следа. Классификация следов в трасологии 37 KB
  Каждое преступное деяние вызывает изменение в окружающей обстановке определенные следы. Слово след имеет 4 значения: Отпечаток оттиск Остаток Последствия Нижняя часть ступни подошва ноги Криминалисты различают следы в широком и узком смысле слова. В узком смысле это только следы отображения такие следы в которых передаются признаки оставившего их объекта и механизм их образования. по объекту следообразования: 1 следы человека это следы рук ног зубов губ ушной раковины и т.
29188. Следы рук 40 KB
  Общие признаки папиллярных узоров: 1 тип папиллярного узора: дуговые узоры петлевые узоры завитковые узоры В основу классификации положена внешняя характеристика. Каждый папиллярный узор образуется слиянием 3х потоков папиллярных линий. Дельта это участок папиллярного узора в котором сходятся все 3 потока папиллярных линий. 2 вид папиллярного узора: дуговой папиллярный узор делится на простой и шатровый завитковый узор: улитка двойной завиток 3 величина узора 4 крутизна изгиба рисунка 5 направление потока папиллярных линий и др.
29189. Обнаружение, фиксация и изъятие следов ног 48 KB
  Обнаружение следов обуви Следы обуви чаще видимые = применяются в основном визуальные методы их обнаружения. Фиксация следов обуви: 1 описание в протоколе осмотра места происшествия Протокол осмотра места происшествия должен содержать следующую информацию: Всегда обращается внимание на качество следов. 1 Описывается вся обстановка: количество следов месторасположение следов взаиморасположение следов относительно друг друга.
29190. Криминалистическое значение следов ног 41.5 KB
  Следы ног встречаются реже. Это связано со следующими обстоятельствами: 1 механизм образования: взаимное воздействие двух гладких твёрдых поверхностей 2 при расследовании сложно установить относимость следов к происшествию на месте происшествия обычно бывает много людей = очень много следов. Криминалистическое значение следов ног: 1 по следам ног можно установить отдельные элементы механизма совершения преступления: пути подхода и отхода преступника направление движения преступника количество лиц находившихся на месте происшествия...