83645

Сведение расчета переходных процессов в цепях с распределенными параметрами к нулевым начальным условиям

Лекция

Физика

Таким образом если к линии в общем случае заряженной подключается некоторый в общем случае активный двухполюсник то для нахождения возникающих волн необходимо определить напряжение на разомкнутых контактах ключа рубильника после чего рассчитать токи и напряжения в схеме с сосредоточенными параметрами включаемой на это напряжение при нулевых начальных условиях. Полученные напряжения и токи накладываются на соответствующие величины предыдущего режима. При отключении нагрузки или участков линии для расчета возникающих волн напряжения и...

Русский

2015-03-15

149 KB

1 чел.

Лекция N 47

Сведение расчета переходных процессов в цепях с распределенными
 параметрами к нулевым начальным условиям

С учетом граничных условий расчет переходных процессов в цепях с распределенными параметрами можно проводить как при нулевых, так и ненулевых начальных условиях. Однако в первом случае анализ осуществляется в целом проще, что определяет целесообразность сведения расчета к нулевым начальным условиям. Пример такого сведения на основе принципа наложения для задачи на подключение в конце линии нагрузки схематично иллюстрирует рис. 1, где в последней схеме сопротивление  имитирует входное сопротивление активного двухполюсника.

Таким образом, если к линии, в общем случае заряженной, подключается некоторый в общем случае активный двухполюсник, то для нахождения возникающих волн необходимо определить напряжение  на разомкнутых контактах ключа (рубильника), после чего рассчитать токи и напряжения в схеме с сосредоточенными параметрами, включаемой на это напряжение  при нулевых начальных условиях. Полученные напряжения и токи накладываются на соответствующие величины предыдущего режима.

При отключении нагрузки или участков линии для расчета возникающих волн напряжения и тока также можно пользоваться методом сведения задачи к нулевым начальным условиям. В этом случае, зная ток  в ветви с размыкаемым ключом (рубильником), необходимо рассчитать токи и напряжения в линии при подключении источника тока  противоположного направления непосредственно к концам отключаемой ветви. Затем полученные токи и напряжения также накладываются на предыдущий режим.

В качестве примера такого расчета рассмотрим длинную линию без потерь на рис. 2, находящуюся под напряжением , к которой подключается дополнительный приемник с сопротивлением .

В соответствии со сформулированным выше правилом схема для расчета возникающих при коммутации волн будет иметь вид на рис. 3. Здесь

;

и в соответствии с законом Ома для волн

.

Соответствующие полученным выражениям эпюры распределения напряжения и тока вдоль линии представлены на рис. 4.

Отметим, что, поскольку

,

к источнику от места подключения нагрузки  пошла волна, увеличивающая ток на этом участке.

Если наоборот приемник с сопротивлением  не подключается, а отключается, то расчет возникающих при этом волн тока и напряжения следует осуществлять по схеме рис.5.

 

Правило удвоения волны

Пусть волна произвольной формы движется по линии с волновым сопротивлением  и падает на некоторую нагрузку  (см. рис. 6,а).

Для момента прихода волны к нагрузке можно записать

;

(1)

или

(2)

Складывая (1) и (2), получаем

(3)

Соотношению (3) соответствует расчетная схема замещения с сосредоточенными параметрами, представленная на рис. 6,б. Момент замыкания ключа в этой схеме соответствует моменту падения волны на нагрузку  в реальной линии. При этом, поскольку цепь на рис. 6,б состоит из элементов с сосредоточенными параметрами, то расчет переходного процесса в ней можно проводить любым из рассмотренных ранее методов (классическим, операторным, с использованием интеграла Дюамеля).

Следует отметить, что, если в длинной линии имеет место узел соединения других линий или разветвление, то в соответствии с указанным подходом эту неоднородность следует имитировать резистивным элементом с соответствующим сопротивлением, на который падает удвоенная волна.

Пусть, например, линия с волновым сопротивлением  разветвляется на две параллельные линии с волновыми сопротивлениями  и  (см. рис. 7,а). Узел разветвления в расчетном плане эквивалентен резистивному элементу с сопротивлением

 

,

при этом расчетная схема замещения для момента прихода волны к стыку линий имеет вид на рис. 7,б.

Так, если падающая волна напряжения имеет прямоугольную форму и величину , то в соответствии со схемой замещения на рис. 7,б напряжение на стыке линий в момент прихода волны

.

Этой величине будут равны волны напряжения, которые пойдут далее в линии с волновыми сопротивлениями  и . Отраженная же волна, которая пойдет по линии с волновым сопротивлением , будет характеризоваться напряжением

.

Таким образом, по правилу удвоения волны определяются отраженные (появившиеся в результате отражения от неоднородности) и преломленные (прошедшие через неоднородность) волны, расчет которых осуществляется по схемам замещения с сосредоточенными параметрами. Следовательно, методика расчета переходных процессов в цепях с распределенными параметрами состоит в последовательном составлении схем замещения с сосредоточенными параметрами для каждого момента прихода очередной падающей волны на очередную неоднородность и расчете по ним отраженных и преломленных волн.

В качестве примера рассмотрим падение прямоугольной волны напряжения величиной  на включенный в конце линии конденсатор  (см. рис. 8,а).

Для расчета напряжения на конденсаторе и тока через него в момент прихода волны к концу линии составим схему замещения с сосредоточенными параметрами (см. рис. 8,б). Для этой схемы можно записать

,

где .

Это напряжение определяется суммой прямой (падающей) и обратной (отраженной) волн, т.е.

,

откуда для отраженной волны имеет место соотношение

или для той же волны в произвольной точке линии с координатой , отсчитываемой от конца линии, с учетом запаздывания на время  -

.

Соответственно для отраженной волны тока можно записать

.

Эпюры распределения напряжения и тока вдоль линии для момента времени , когда отраженная волна прошла некоторое расстояние , представлены на рис. 9. В этот момент напряжение на конденсаторе

и ток через него

.

В качестве другого примера рассмотрим падение прямоугольной волны напряжения величиной   на включенный в конце линии индуктивный элемент (см. рис. 10,а). В соответствии с расчетной схемой на рис. 10,б для тока через катушку индуктивности и напряжения на ней соответственно можно записать

;

,

где

С учетом этого выражения для отраженных волн напряжения и тока в произвольной точке линии имеют вид

;

.

Эпюры распределения напряжения и тока вдоль линии для момента времени  приведены на рис. 11.

 

Литература

  1.  Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  2.  Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.2. Жуховицкий Б.Я., Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. –М.:Энергия- 1972. –200с.
  3.  Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

Контрольные вопросы и задачи

  1.  Как расчет переходных процессов в длинных линиях сводится к нулевым начальным условиям?
  2.  В чем смысл правила удвоения волн, для чего оно используется?
  3.  Сформулируйте методику расчета переходных процессов в цепях с распределенными параметрами.
  4.  Что называется отраженными и преломленными волнами?
  5.  В линии на рис. 2 , , . Определить волны тока и напряжения, возникающие при коммутации, если .

Ответ: ; ; .

  1.  Рассмотреть падение волны напряжения, возникшей при коммутации в схеме предыдущей задачи, на резистор  и определить обратные волны тока и напряжения, образующиеся при этом падении.

Ответ: ; .

  1.  К линии, находящейся под напряжением , подключается

незаряженная линия (см. рис. 12). Определить волны тока и напряжения, возникающие при этой коммутации, если , .

Ответ: ; ; .


  1.  Рассмотреть падение волны напряжения при коммутации в схеме предыдущей задачи на резистор  и определить возникающие при этом обратные волны напряжения и тока.

Ответ: ; .

  1.  Однородная длинная линия с  нагружена на емкостный элемент с . Посередине линии параллельно ему включен еще один конденсатор с . От генератора вдоль линии распространяется волна напряжения, которую до падения на конденсатор  можно считать прямоугольной с . Записать выражение для напряжения на конденсаторе .

Ответ: .

321


 

А также другие работы, которые могут Вас заинтересовать

40152. ПОМЕХОУСТОЙЧИВОЕ КОДИРОВАНИЕ. КЛАССИФИКАЦИЯ КОДОВ 146 KB
  По длине кодов и взаимному расположению в них символов различают равномерные и неравномерные коды. Неравномерные коды отличаются тем что кодовые комбинации у них отличаются друг от друга не только взаимным расположением символов но и их количеством при минимизации средней длины кодовой последовательности. Очевидно что средняя длина неравномерного кода будет минимизироваться тогда когда с более вероятными сообщениями источника будут сопоставляться более короткие комбинации канальных символов. Тем самым создается возможность обнаружения и...
40153. МОДУЛЯЦИЯ СИГНАЛОВ 143.5 KB
  В современных цифровых системах связи радиолокации радионавигации и радиотелеуправления также применяются различные виды импульсной модуляции.2 Радиосигналы с амплитудной модуляцией При АМ амплитуда несущего колебания меняется в такт передаваемому сообщению st Тогда общее выражение для АМ – сигнала будет иметь вид: где – амплитуда в отсутствии модуляции; – угловая круговая частота; – начальная фаза; – безразмерный коэффициент пропорциональности; – модулирующий сигнал. Рассмотрим простейший вид амплитудной модуляции –...
40154. РАДИОПЕРЕДАЮЩИЕ И РАДИОПРИЕМНЫЕ УСТРОЙСТВА 44.5 KB
  Назначение классификация и основные параметры Радиопередающие устройства радиопередатчики предназначены для формирования колебаний несущей частоты; модуляции их по закону передаваемого сообщения и излучения полученного радиосигнала в пространство или передачи его по физическим линиям связи. Нестабильность частоты несущих колебаний. Абсолютной нестабильностью частоты называется отклонение частоты f излучаемого радиопередатчиком сигнала от номинального значения частоты fном. Относительной нестабильностью частоты называется отношение...
40155. Основы радиоэлектроники и связи 78 KB
  В ней рассматриваются способы математического представления сообщений сигналов и помех методы формирования и преобразования сигналов в электрических цепях вопросы анализа помехоустойчивости и оптимального приема сообщений основы теории информации и кодирования. Знания полученные в результате изучения дисциплины являются базой для глубокого усвоения материала по существующим и перспективным методам передачи информации сравнительному анализу этих методов и выявлению наиболее рациональных способов повышения эффективности радиоэлектронных...
40156. ОБЩИЕ СВЕДЕНИЯ О РАДИОТЕХНИЧЕСКИХ СИГНАЛАХ И ПОМЕХАХ 1.75 MB
  Импульсный сигнал – это сигнал конечной энергии существенно отличный от нуля в течение ограниченного интервала времени соизмеримого со временем завершения переходного процесса в системе для воздействия на которую этот сигнал предназначен. Конкретный вид случайного процесса который наблюдается во время опыта например на осциллографе называется реализацией этого случайного процесса. Примером такого процесса является процесс характеризующий состояние системы массового обслуживания когда система скачком в произвольные моменты времени t...
40157. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ И СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ СИГНАЛОВ И ПОМЕХ 2.32 MB
  Для стационарного случайного процесса двумерная плотность вероятности и соответственно корреляционная функция зависят не от t1 и t2 в отдельности а только от их разности = t2 t1. В соответствии с этим корреляционная функция стационарного процесса определяется выражением 3.1 где математическое ожидание стационарного процесса; х1 х2 возможные значения случайного процесса соответственно в моменты времени t1 t2 ; = t2 – t1 интервал времени между сечениями; двумерная...
40158. ВРЕМЕННОЙ И СПЕКТРАЛЬНЫЙ АНАЛИЗ ПРОХОЖДЕНИЯ СЛУЧАЙНОГО ПРОЦЕССА ЧЕРЕЗ ЛИНЕЙНЫЕ СИСТЕМЫ 1.39 MB
  3 справедливы в полной мере если xt есть реализация случайного процесса t. Но эти формулы служат для решения основной задачи анализа линейной цепи при случайных воздействиях заключающейся в нахождении вероятностных характеристик выходного случайного процесса t если известны вероятностные характеристики входного случайного воздействия и определена цепь посредством задания порядка и коэффициентов дифференциального уравнения или импульсной характеристики. Требуется найти математическое ожидание t и корреляционную функцию...
40159. ОПТИМАЛЬНЫЙ РАДИОПРИЕМ КАК СТАТИСТИЧЕСКАЯ ЗАДАЧА 548 KB
  Введение в теорию оптимального радиоприема ОПТИМАЛЬНЫЙ РАДИОПРИЕМ КАК СТАТИСТИЧЕСКАЯ ЗАДАЧА Помехоустойчивость и ее основные задачи Особенность радиоприёма состоит в том что наряду с сигналами через антенную систему в приёмное устройство поступают разнообразные помехи. Количественно помехоустойчивость оценивается с помощью различных показателей использующих вероятностное описание помех и сигнала. Например применяются такие показатели как отношение сигнал шум на входе и выходе приёмного устройства вероятность правильного обнаружения...
40160. ИМПУЛЬСНЫЕ УСИЛИТЕЛИ МОЩНОСТИ 340.5 KB
  Основными определяющими факторами являются длительность фронта и среза импульса коллекторного перехода стокового тока транзистора и тип нагрузки активной и активно – индуктивной. Первый способ применяется когда возможно произвольно варьировать параметрами нагрузки. Тогда параметры нагрузки выбираются таким образом чтобы к моменту коммутации автоматически выполнялось условие Uкл=0 или Iкл=0. Второй способ используется если параметры нагрузки строго заданы и состоит во введении в схему дополнительных цепей искусственно разносящих во...