83650

Элементы электрических цепей

Лекция

Физика

Электротехнические устройства производящие электрическую энергию называются генераторами или источниками электрической энергии а устройства потребляющие ее – приемниками потребителями электрической энергии. Схемы замещения источников электрической энергии Свойства источника электрической энергии описываются ВАХ называемой внешней характеристикой источника. ВАХ источника может быть определена экспериментально на основе схемы представленной на рис. Здесь вольтметр V измеряет напряжение на зажимах 12 источника И а амперметр А –...

Русский

2015-03-15

156 KB

0 чел.

Лекция N 5

Элементы электрических цепей

Электромагнитные процессы, протекающие в электротехнических устройствах, как правило, достаточно сложны. Однако во многих случаях, их основные характеристики можно описать с помощью таких интегральных понятий, как: напряжение, ток, электродвижущая сила (ЭДС). При таком подходе совокупность электротехнических устройств, состоящую из соответствующим образом соединенных источников и приемников электрической энергии, предназначенных для генерации, передачи, распределения и преобразования электрической энергии и (или) информации, рассматривают как электрическую цепь. Электрическая цепь состоит из отдельных частей (объектов), выполняющих определенные функции и называемых элементами цепи. Основными элементами цепи являются источники и приемники электрической энергии (сигналов). Электротехнические устройства, производящие электрическую энергию, называются генераторами или источниками электрической энергии, а устройства, потребляющие ее – приемниками (потребителями) электрической энергии.

У каждого элемента цепи можно выделить определенное число зажимов (полюсов), с помощью которых он соединяется с другими элементами. Различают двух –и многополюсные элементы. Двухполюсники имеют два зажима. К ним относятся источники энергии (за исключением управляемых и многофазных), резисторы, катушки индуктивности, конденсаторы. Многополюсные элементы – это, например, триоды, трансформаторы, усилители и т.д.

Все элементы электрической цепи условно можно разделить на активные и пассивные. Активным называется элемент, содержащий в своей структуре источник электрической энергии. К пассивным относятся элементы, в которых рассеивается (резисторы) или накапливается (катушка индуктивности и конденсаторы) энергия. К основным характеристикам элементов цепи относятся их вольт-амперные, вебер-амперные и кулон-вольтные характеристики, описываемые дифференциальными или (и) алгебраическими уравнениями. Если элементы описываются линейными дифференциальными или алгебраическими уравнениями, то они называются линейными, в противном случае они относятся к классу нелинейных. Строго говоря, все элементы являются нелинейными. Возможность рассмотрения их как линейных, что существенно упрощает математическое описание и анализ процессов, определяется границами изменения характеризующих их переменных и их частот. Коэффициенты, связывающие переменные, их производные и интегралы в этих уравнениях, называются параметрами элемента.

Если параметры элемента не являются функциями пространственных координат, определяющих его геометрические размеры, то он называется элементом с сосредоточенными параметрами. Если элемент описывается уравнениями, в которые входят пространственные переменные, то он относится к классу элементов с распределенными параметрами. Классическим примером последних является линия передачи электроэнергии (длинная линия).

Цепи, содержащие только линейные элементы, называются линейными. Наличие в схеме хотя бы одного нелинейного элемента относит ее к классу нелинейных.

Рассмотрим пассивные элементы цепи, их основные характеристики и параметры.

1. Резистивный элемент (резистор)

Условное графическое изображение резистора приведено на рис. 1,а. Резистор – это пассивный элемент, характеризующийся резистивным сопротивлением. Последнее определяется геометрическими размерами тела и свойствами материала: удельным сопротивлением r (Ом´ м) или обратной величиной – удельной проводимостью (См/м).

В простейшем случае проводника длиной и сечением S его сопротивление определяется выражением

.

В общем случае определение сопротивления связано с расчетом поля в проводящей среде, разделяющей два электрода.

Основной характеристикой резистивного элемента является зависимость (или ), называемая вольт-амперной характеристикой (ВАХ). Если зависимость представляет собой прямую линию, проходящую через начало координат (см.рис. 1,б), то резистор называется линейным и описывается соотношением

или

,

где - проводимость. При этом R=const.

Нелинейный резистивный элемент, ВАХ которого нелинейна (рис. 1,б), как будет показано в блоке лекций, посвященных нелинейным цепям, характеризуется несколькими параметрами. В частности безынерционному резистору ставятся в соответствие статическое и дифференциальное сопротивления.

2. Индуктивный элемент (катушка индуктивности)

Условное графическое изображение катушки индуктивности приведено на рис. 2,а. Катушка – это пассивный элемент, характеризующийся индуктивностью. Для расчета индуктивности катушки необходимо рассчитать созданное ею магнитное поле.

Индуктивность определяется отношением потокосцепления к току, протекающему по виткам катушки,

.

В свою очередь потокосцепление равно сумме произведений потока, пронизывающего витки, на число этих витков , где .

Основной характеристикой катушки индуктивности является зависимость , называемая вебер-амперной характеристикой. Для линейных катушек индуктивности зависимость представляет собой прямую линию, проходящую через начало координат (см. рис. 2,б); при этом

.

Нелинейные свойства катушки индуктивности (см. кривую на рис. 2,б) определяет наличие у нее сердечника из ферромагнитного материала, для которого зависимость магнитной индукции от напряженности поля нелинейна. Без учета явления магнитного гистерезиса нелинейная катушка характеризуется статической и дифференциальной индуктивностями.

3. Емкостный элемент (конденсатор)

Условное графическое изображение конденсатора приведено на рис. 3,а.

Конденсатор – это пассивный элемент, характеризующийся емкостью. Для расчета последней необходимо рассчитать электрическое поле в конденсаторе. Емкость определяется отношением заряда q на обкладках конденсатора к напряжению u между ними

и зависит от геометрии обкладок и свойств диэлектрика, находящегося между ними. Большинство диэлектриков, используемых на практике, линейны, т.е. у них относительная диэлектрическая проницаемость =const. В этом случае зависимость представляет собой прямую линию, проходящую через начало координат, (см. рис. 3,б) и

.

У нелинейных диэлектриков (сегнетоэлектриков) диэлектрическая проницаемость является функцией напряженности поля, что обусловливает нелинейность зависимости (рис. 3,б). В этом случае без учета явления электрического гистерезиса нелинейный конденсатор характеризуется статической и дифференциальной емкостями.

 

Схемы замещения источников электрической энергии

Свойства источника электрической энергии описываются ВАХ , называемой внешней характеристикой источника. Далее в этом разделе для упрощения анализа и математического описания будут рассматриваться источники постоянного напряжения (тока). Однако все полученные при этом закономерности, понятия и эквивалентные схемы в полной мере распространяются на источники переменного тока. ВАХ источника может быть определена экспериментально на основе схемы, представленной на рис. 4,а. Здесь вольтметр V измеряет напряжение на зажимах 1-2 источника И, а амперметр А – потребляемый от него ток I, величина которого может изменяться с помощью переменного нагрузочного резистора (реостата) RН.

В общем случае ВАХ источника является нелинейной (кривая 1 на рис. 4,б). Она имеет две характерные точки, которые соответствуют:

а – режиму холостого хода ;

б – режиму короткого замыкания .

Для большинства источников режим короткого замыкания (иногда холостого хода) является недопустимым. Токи и напряжения источника обычно могут изменяться в определенных пределах, ограниченных сверху значениями, соответствующими номинальному режиму (режиму, при котором изготовитель гарантирует наилучшие условия его эксплуатации в отношении экономичности и долговечности срока службы). Это позволяет в ряде случаев для упрощения расчетов аппроксимировать нелинейную ВАХ на рабочем участке m-n (см. рис. 4,б) прямой, положение которой определяется рабочими интервалами изменения напряжения и тока. Следует отметить, что многие источники (гальванические элементы, аккумуляторы) имеют линейные ВАХ.

Прямая 2 на рис. 4,б описывается линейным уравнением

,

(1)

где - напряжение на зажимах источника при отключенной нагрузке (разомкнутом ключе К в схеме на рис. 4,а); - внутреннее сопротивление источника.

Уравнение (1) позволяет составить последовательную схему замещения источника (см. рис. 5,а). На этой схеме символом Е обозначен элемент, называемый идеальным источником ЭДС. Напряжение на зажимах этого элемента не зависит от тока источника, следовательно, ему соответствует ВАХ на рис. 5,б. На основании (1) у такого источника . Отметим, что направления ЭДС и напряжения на зажимах источника противоположны.

Если ВАХ источника линейна, то для определения параметров его схемы замещения необходимо провести замеры напряжения и тока для двух любых режимов его работы.

Существует также параллельная схема замещения источника. Для ее описания разделим левую и правую части соотношения (1) на . В результате получим

или

,

(2)

где ; - внутренняя проводимость источника.

Уравнению (2) соответствует схема замещения источника на рис. 6,а.

На этой схеме символом J обозначен элемент, называемый идеальным источником тока. Ток в ветви с этим элементом равен и не зависит от напряжения на зажимах источника, следовательно, ему соответствует ВАХ на рис. 6,б. На этом основании с учетом (2) у такого источника , т.е. его внутреннее сопротивление .

Отметим, что в расчетном плане при выполнении условия последовательная и параллельная схемы замещения источника являются эквивалентными. Однако в энергетическом отношении они различны, поскольку в режиме холостого хода для последовательной схемы замещения мощность равна нулю, а для параллельной – нет.

Кроме отмеченных режимов функционирования источника, на практике важное значение имеет согласованный режим работы, при котором нагрузкой RН от источника потребляется максимальная мощность

,

(3)

Условие такого режима

,

(4)

В заключение отметим, что в соответствии с ВАХ на рис. 5,б и 6,б идеальные источники ЭДС и тока являются источниками бесконечно большой мощности.

Литература

  1.  Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2.  Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3.  Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия, 1972. –240 с.
  4.  Каплянский А.Е. и др. Теоретические основы электротехники. Изд. 2-е. Учеб. пособие для электротехнических и энергетических специальностей вузов. –М.: Высш. шк., 1972. –448 с.

Контрольные вопросы и задачи

  1.  Может ли внешняя характеристик источника проходить через начало координат?
  2.  Какой режим (холостой ход или короткое замыкание) является аварийным для источника тока?
  3.  В чем заключаются эквивалентность и различие последовательной и параллельной схем замещения источника?
  4.  Определить индуктивность L и энергию магнитного поля WМкатушки, если при токе в ней I=20А потокосцепление y =2 Вб.

Ответ: L=0,1 Гн; WМ=40 Дж.

  1.  Определить емкость С и энергию электрического поля WЭконденсатора, если при напряжении на его обкладках U=400 В заряд конденсатора q=0,2´ 10-3 Кл.

Ответ: С=0,5 мкФ; WЭ=0,04 Дж.

  1.  У генератора постоянного тока при токе в нагрузке I1=50Анапряжение на зажимах U1=210 В,а притоке, равном I2=100А, оно снижается до U2=190 В.
  2.  Определить параметры последовательной схемы замещения источника и ток короткого замыкания.

Ответ:

  1.  Вывести соотношения (3) и (4) и определить максимальную мощность, отдаваемую нагрузке, по условиям предыдущей задачи.

Ответ:

38


 

А также другие работы, которые могут Вас заинтересовать

38958. Принципы построения обучаемых АТСН 43.5 KB
  Назначение обучаемых ТВК может быть различным всевозможные измерительные приборы системы технического зрения астронавигационные системы тепловизионные обзорнопоисковые системы и т. Однако режиму автономного функционирования должен предшествовать период обучения системы при временном участии оператора. Изображение эталона посредством оптической системы ОС и телевизионного датчика ТВД преобразуется сначала в аналоговый видеосигнал а затем с помощью формирователя бинарного сигнала ФБС в эталонный бинарный сигнал фиксируемый в...
38959. Функции узла предварительной обработки видеосигнала в структуре ТВК. Состав и назначение его основных компонентов 235.5 KB
  Состав и назначение его основных компонентов Основная функция устройства предварительной обработки УПО – преобразование видеосигнала представляющего собой последовательность видеоимпульсов соответствующих освещенностям в анализируемых точках изображения в адекватные значения кодов двоичных чисел. Кроме АЦП в составе УПО должны быть дополнительные аппаратные средства обеспечивающие условия оптимального согласования параметров видеосигнала с параметрами АЦП независимо от содержания кадра рис. Функциональная схема устройства...
38960. Методы моделирования на этапе проектирования ТВК. Достоинства и недостатки математического (компьютерного) и физического моделирования 30 KB
  Методы математического и физического моделирования проектируемой системы помогают решать задачи связанные с уточнением параметров решающих правил при реализации различных алгоритмов обработки сигналов в ТВК. Они способствуют выявлению обоснованных требований к отдельным звеньям системы особенно в тех случаях когда аналитические расчётные методики оказываются малоэффективными или достаточно сложными. Эта модель обычно включает в себя модели основных звеньев системы: изображения объекта оптической системы фотоприёмного узла анализатора...
38961. Задачи, решаемые на этапе предварительной обработки изображений в ТВК. Назовите и поясните некоторые из методов, которые могут использоваться для решения этих задач 53.5 KB
  Сокращение массива [E ij ] за счет исключения отсчетов сигнала от фона; – использование алгоритмов сглаживания для подавления некоррелированных шумов; – применение методов трансформирования двумерных массивов исходных изображений в двумерные массивы коэффициентов на основе ортогональных преобразований для последующей фильтрации выделения признаков наблюдаемых объектов и т. Подробнее рассмотрим алгоритмы предварительной фильтрации используемые при решении задачи обнаружения и селекции точечных объектов при наличии неоднородного фона....
38962. Алгоритмы трансформирования исходных изображений на основе ортогональных преобразований 68 KB
  Алгоритмы трансформирования исходных изображений на основе ортогональных преобразований С какой целью могут использоваться алгоритмы трансформирования исходных изображений на основе ортогональных преобразований Что общего и в чём различия между дискретным преобразованием Фурье и другими видами ортогональных преобразований. Один из видов ортогональных преобразований дискретное преобразование Фурье. В процессе ортогональных преобразований изображения имеющего сильные корреляционные связи между соседними элементами происходит...
38963. Алгоритмы выделения границ (контуров) объектов наблюдения в полутоновых и бинарных изображениях 166 KB
  После этого границы объекта могут быть найдены следующим образом.15 где: ij ∈ωгр – множество координат точек принадлежащих области изображения вблизи границ объекта; D – пороговое значение нормы градиента.15 обычно недостаточно для успешного выделения контуров объекта. Изменяя величину D можно в принципе менять соотношение между вероятностью выделения лишних точек ошибки первого рода и вероятностью пропуска контурных точек объекта ошибки второго рода.
38964. Методы автоматической идентификации объектов без выделения геометрических признаков. Их достоинства и недостатки 46.5 KB
  Идентификация заключается в сравнении изображения одного объекта со всеми эталонами заданного класса. Способ прямого сравнения изображения объекта с эталонным изображением. Пусть [Eij] – исходное изображение объекта; [Fij] – эталонное изображение.4 и следовательно могут возникнуть ошибки связанные с неправильной идентификацией объекта ошибки первого рода.
38965. Классификация телевизионных вычислительных комплексов (ТВК). На каких разделах теории статистических решений базируется разработка ТВК, решающих задачи обнаружения, распознавания или измерения параметров объектов наблюдения. Приведите примеры подобных зад 35.5 KB
  На каких разделах теории статистических решений базируется разработка ТВК решающих задачи обнаружения распознавания или измерения параметров объектов наблюдения. Приведите примеры подобных задач Понятие телевизионные вычислительные комплексы ТВК включает в себя очень широкий спектр телевизионных систем ТС предназначенных для решения самых разнообразных задач так или иначе связанных с наблюдением за объектами. Научной основой для проектирования ТВК является теория статистических решений включающая в себя три основных раздела: теорию...
38966. Виды и методы выделения геометрических признаков объектов, используемых в ТВК при автоматической идентификации объектов. Методы достижения инвариантности признаков к масштабу изображения объектов 172.5 KB
  Методы достижения инвариантности признаков к масштабу изображения объектов Литвинов Виды: Определение площади и периметра Площадь есть число элементов S относящихся к объекту массиву чисел L. агр – множество граничных точек изображения объекта вычисляются предварительно Для достижения инвариантности к масштабу используют нормируемые признаки: U = P2 V = P 1 2 Определение радиусов вписанных и описанных окружностей Состоит из 2х этапов: А Определение координат геометрического центра изображения объекта: Б Вычисление...