83652

Представление синусоидальных величин с помощью векторов и комплексных чисел

Лекция

Физика

Это было связано с тем что первые генераторы электрической энергии вырабатывали постоянный ток который вполне удовлетворял технологическим процессам электрохимии а двигатели постоянного тока обладают хорошими регулировочными характеристиками. Цепи с изменяющимися – переменными – токами по сравнению с цепями постоянного тока имеют ряд особенностей. Для периодического тока имеем 1 Величина обратная периоду есть частота измеряемая в герцах Гц: 2 Диапазон частот применяемых в технике: от сверхнизких частот 0. Ее принято...

Русский

2015-03-15

166 KB

3 чел.

Лекция N 7

Представление синусоидальных величин
с помощью векторов и комплексных чисел

Переменный ток долгое время не находил практического применения.  Это было связано с тем, что первые генераторы электрической энергии вырабатывали постоянный ток, который вполне удовлетворял технологическим процессам электрохимии, а двигатели постоянного тока обладают хорошими регулировочными характеристиками. Однако по мере развития производства постоянный ток все менее стал удовлетворять возрастающим требованиям экономичного электроснабжения. Переменный ток дал возможность эффективного дробления электрической энергии и изменения величины напряжения с помощью трансформаторов. Появилась возможность производства электроэнергии на крупных электростанциях с последующим экономичным ее распределением потребителям, увеличился радиус электроснабжения.

В настоящее время центральное производство и распределение электрической энергии осуществляется в основном на переменном токе. Цепи с изменяющимися – переменными – токами по сравнению с цепями постоянного тока имеют ряд особенностей. Переменные токи и напряжения вызывают переменные электрические и магнитные поля. В результате изменения этих полей в цепях возникают явления самоиндукции и взаимной индукции, которые оказывают самое существенное влияние на процессы, протекающие в цепях, усложняя их анализ.

Переменным током (напряжением, ЭДС и т.д.) называется ток (напряжение, ЭДС и т.д.), изменяющийся во времени. Токи, значения которых повторяются через равные промежутки времени в одной и той же последовательности, называются периодическими, а наименьший промежуток времени, через который эти повторения наблюдаются, - периодом Т. Для периодического тока имеем

,

  (1)

Величина, обратная периоду, есть частота,  измеряемая в герцах (Гц):

,

(2)

Диапазон частот, применяемых в технике: от сверхнизких частот (0.01¸10 Гц – в системах автоматического регулирования, в аналоговой вычислительной технике) – до сверхвысоких (3000 ¸ 300000 МГц – миллиметровые волны: радиолокация, радиоастрономия). В РФ промышленная частота  f = 50Гц.

Мгновенное значение переменной величины есть функция времени. Ее принято обозначать строчной буквой:

i  - мгновенное значение тока ;

u – мгновенное значение напряжения ;

е - мгновенное значение ЭДС ;

р- мгновенное значение мощности .

Наибольшее мгновенное значение переменной величины за период называется амплитудой (ее принято обозначать заглавной буквой с индексом m).

 - амплитуда тока;

 - амплитуда напряжения;

 - амплитуда ЭДС.

Действующее значение переменного тока

Значение периодического тока, равное такому значению постоянного тока, который за время одного периода произведет тот же самый тепловой или электродинамический эффект, что и периодический ток, называют действующим значением периодического тока:

,

(3)

Аналогично определяются действующие значения ЭДС и напряжения.

 

Синусоидально изменяющийся ток

Из всех возможных форм периодических токов наибольшее распространение получил синусоидальный ток. По сравнению с другими видами тока синусоидальный ток имеет то преимущество, что позволяет в общем случае наиболее экономично осуществлять производство, передачу, распределение и использование электрической энергии. Только при использовании синусоидального тока удается сохранить неизменными формы кривых напряжений и токов на всех участках сложной линейной цепи. Теория синусоидального тока является ключом к пониманию теории других цепей.

Изображение синусоидальных ЭДС, напряжений
и токов на плоскости декартовых координат

Синусоидальные токи и напряжения можно изобразить графически, записать при помощи уравнений с тригонометрическими функциями, представить в виде векторов на декартовой плоскости или комплексными числами.

Приведенным на рис. 1, 2 графикам двух синусоидальных ЭДС е1 и е2 соответствуют уравнения:

.


Значения аргументов синусоидальных функций  и  называются
фазами синусоид, а значение фазы в начальный момент времени (t=0):  и  - начальной фазой ( ).

Величину , характеризующую скорость изменения фазового угла, называют угловой частотой. Так как фазовый угол синусоиды за время одного периода Т изменяется на  рад., то угловая частота есть , где f– частота.

При совместном рассмотрении двух синусоидальных величин одной частоты разность их фазовых углов, равную разности начальных фаз, называют углом сдвига фаз.

Для синусоидальных ЭДС е1 и е2 угол сдвига фаз:

.

 

Векторное изображение синусоидально
изменяющихся величин

На декартовой плоскости из начала координат проводят векторы, равные по модулю амплитудным значениям синусоидальных величин, и вращают эти векторы против часовой стрелки (в ТОЭ данное направление принято за положительное) с угловой частотой, равной w. Фазовый угол при вращении отсчитывается от положительной полуоси абсцисс. Проекции вращающихся векторов на ось ординат равны мгновенным значениям ЭДС е1 и е2 (рис. 3). Совокупность векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения и токи, называют векторными диаграммами. При построении векторных диаграмм векторы удобно располагать для начального момента времени (t=0), что вытекает из равенства угловых частот синусоидальных величин и эквивалентно тому, что система декартовых координат сама вращается против часовой стрелки со скоростью w. Таким образом, в этой системе координат векторы неподвижны (рис. 4). Векторные диаграммы нашли широкое применение при анализе цепей синусоидального тока. Их применение делает расчет цепи более наглядным и простым. Это упрощение заключается в том, что сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием соответствующих векторов.

 

Пусть, например, в точке разветвления цепи (рис. 5) общий ток  равен сумме токов  и  двух ветвей:

.

Каждый из этих токов синусоидален и может быть представлен уравнением

и .

Результирующий ток также будет синусоидален:

.

Определение амплитуды  и начальной фазы  этого тока путем соответствующих тригонометрических преобразований получается довольно громоздким и мало наглядным, особенно, если суммируется большое число синусоидальных величин.

Значительно проще это осуществляется с помощью векторной диаграммы. На рис. 6 изображены начальные положения векторов токов, проекции которых на ось ординат дают мгновенные значения токов для t=0. При вращении этих векторов с одинаковой угловой скоростью w их взаимное расположение не меняется, и угол сдвига фаз между ними остается равным .

Так как алгебраическая сумма проекций векторов на ось ординат равна мгновенному значению общего тока, вектор общего тока равен геометрической сумме векторов токов:

.

Построение векторной диаграммы в масштабе позволяет определить значения  и  из диаграммы, после чего может быть записано решение для мгновенного значения  путем формального учета угловой частоты: .

 

Представление синусоидальных ЭДС, напряжений
и токов комплексными числами

Геометрические операции с векторами можно заменить алгебраическими операциями с комплексными числами, что существенно повышает точность получаемых результатов.

Каждому вектору на комплексной плоскости соответствует определенное комплексное число, которое может быть записано в :

показательной   

тригонометрической      или

алгебраической      - формах. 

Например, ЭДС , изображенной на рис. 7 вращающимся вектором, соответствует комплексное число

.

Фазовый угол  определяется по проекциям вектора на оси “+1” и “+j” системы координат, как

 .

В соответствии с тригонометрической формой записи мнимая составляющая комплексного числа определяет мгновенное значение синусоидально изменяющейся ЭДС:

,

(4)

 

Комплексное число  удобно представить в виде произведения двух комплексных чисел:

,

(5)

 

Параметр , соответствующий положению вектора для t=0 (или на вращающейся со скоростью w комплексной плоскости), называют комплексной амплитудой: , а параметр  - комплексом мгновенного значения.

Параметр является оператором поворота вектора на угол ωt относительно начального положения вектора.

Вообще говоря, умножение вектора на оператор поворота  есть его поворот относительно первоначального положения на угол ±a.

Следовательно, мгновенное значение синусоидальной величины равно мнимой части без знака “j” произведения комплекса амплитуды  и оператора поворота :

.

Переход от одной формы записи синусоидальной величины к другой осуществляется с помощью формулы Эйлера:

,

(6)

Если, например, комплексная амплитуда напряжения задана в виде комплексного числа в алгебраической форме:

,

- то для записи ее в показательной форме, необходимо найти начальную фазу , т.е. угол, который образует вектор  с положительной полуосью +1:

.

Тогда мгновенное значение напряжения:

,

где .

При записи выражения для определенности было принято, что , т.е. что изображающий вектор находится в первом или четвертом квадрантах. Если , то при  (второй квадрант)

,

(7)

а при  (третий квадрант)

(8)

или

(9)

Если задано мгновенное значение тока в виде , то комплексную амплитуду записывают сначала в показательной форме, а затем (при необходимости) по формуле Эйлера переходят к алгебраической форме:

.

Следует указать, что при сложении и вычитании комплексов следует пользоваться алгебраической формой их записи, а при умножении и делении удобна показательная форма.

Итак, применение комплексных чисел позволяет перейти от геометрических операций над векторами к алгебраическим над комплексами. Так при определении комплексной амплитуды результирующего тока  по рис. 5 получим:


где
;

.

 

Действующее значение синусоидальных ЭДС, напряжений и токов

В соответствии с выражением (3) для действующего значения синусоидального тока запишем:

.

Аналогичный результат можно получить для синусоидальных ЭДС и напряжений. Таким образом, действующие значения синусоидальных тока, ЭДС и напряжения меньше своих амплитудных значений в  раз:

.

(10)

Поскольку, как будет показано далее, энергетический расчет цепей переменного тока обычно проводится с использованием действующих значений величин, по аналогии с предыдущим введем понятие комплекса действующего значения 

.

 

Литература

1.                 Основы теории цепей: Учеб. для вузов /Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

2.                 Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

1.     Какой практический смысл имеет изображение синусоидальных величин с помощью векторов?

2.     Какой практический смысл имеет представление синусоидальных величин с использованием комплексных чисел?

3.     В чем заключаются преимущества изображения синусоидальных величин с помощью комплексов по сравнению с их векторным представлением?

4.     Для заданных синусоидальных функций ЭДС и тока  записать соответствующие им комплексы амплитуд и действующих значений, а также комплексы мгновенных значений.

5.     На рис. 5 , а . Определить .

Ответ: .

51


 

А также другие работы, которые могут Вас заинтересовать

81493. Основные источники аммиака в организме. Роль глутамата в обезвреживании и транспорте аммиака. Глутамин как донор амидной группы при синтезе ряда соединений 184.57 KB
  Роль глутамата в обезвреживании и транспорте аммиака. Основные источники аммиака Источник Процесс Ферменты Локализация процесса Аминокислоты Непрямое дезаминирование основной путь дезаминирования аминокислот Аминотрансферазы ПФ Глутаматдегидрогеназа ND Все ткани Окислительное дезаминирование глутамата Глутаматдегидрогеназа ND Все ткани Неокислительное дезаминирование Гис Сер Тре ГистидазаСерин треониндегидратазы ПФ Преимущественно печень Окислительное дезаминирование аминокислот малозначимый путь дезаминирования Оксидаза...
81495. Биосинтез мочевины. Связь орнитинового цикла с ЦТК. Происхождение атомов азота мочевины. Нарушения синтеза и выведения мочевины. Гипераммонемии 382.01 KB
  Мочевина - основной конечный продукт азотистого обмена, в составе которого из организма выделяется до 90% всего выводимого азота. Экскреция мочевины в норме составляет 25 г/сут. При повышении количества потребляемых с пищей белков экскреция мочевины увеличивается.
81496. Обмен безазотистого остатка аминокислот. Гликогенные и кетогенные аминокислоты. Синтез глюкозы из аминокислот. Синтез аминокислот из глюкозы 162.72 KB
  В ходе катаболизма аминокислот происходит отщепление аминогруппы и выделение аммиака. Другим продуктом дезаминирования аминокислот служит их безазотистый остаток в виде α-кетокислот. Катаболизм аминокислот происходит практически постоянно. За сутки в норме в организме человека распадается примерно 100 г аминокислот, и такое же количество должно поступать в составе белков пищи.
81497. Трансметилирование. Метионин и S-аденозилметионин. Синтез креатина, адреналина и фосфатидилхолинов 166.74 KB
  Метальная группа метионина мобильный одноуглеродный фрагмент используемый для синтеза ряда соединений. Перенос метильной группы метионина на соответствующий акцептор называют реакцией трансметилирования имеющей важное метаболическое значение. Метальная группа в молекуле метионина прочно связана с атомом серы поэтому непосредственным донором этого одноутлеродного фрагмента служит активная форма аминокислоты. Реакция активация метионина Активной формой метионина является Sаденозилметионин SM сульфониевая форма аминокислоты...
81498. Метилирование ДНК. Представление о метилировании чужеродных и лекарственных соединений 108.02 KB
  Метилирование ДНК это модификация молекулы ДНК без изменения самой нуклеотидной последовательности ДНК что можно рассматривать как часть эпигенетическойсоставляющей генома. Метилирование ДНК заключается в присоединении метильной группы к цитозину в позиции С5 цитозинового кольца. У человека за процесс метилирования ДНК отвечают три фермента называемые ДНКметилтрансферазами 1 3 и 3b DNMT1 DNMT3 DNMT3b соответственно.
81499. Источники и образование одноуглеродных групп. Тетрагидрофолиевая кислота и цианкобаламин и их роль в процессах трансметилирования 168.87 KB
  Образование и использование одноуглеродных фрагментов. Ещё один источник формального и формиминофрагментов гистидин. Все образующиеся производные Н4фолата играют роль промежуточных переносчиков и служат донорами одноуглеродных фрагментов при синтезе некоторых соединений: пуриновых оснований и тимидиловой кислоты необходимых для синтеза ДНК и РНК регенерации метионина синтезе различных формиминопроизводных формиминоглицина и т. Перенос одноуглеродных фрагментов к акцептору необходим не только для синтеза ряда соединений но и для...
81500. Антивитамины фолиевой кислоты. Механизм действия сульфаниламидных препаратов 104.02 KB
  В медицинской практике в частности в онкологии нашли применение некоторые синтетические аналоги антагонисты фолиевой кислоты. Аминоптерин является наиболее активным цитостатикомантагонистом фолиевой кислоты; отличается высокой токсичностью вследствие чего показан лишь при тяжёлых формах псориаза. ПАБК необходима микроорганизмам для синтеза фолиевой кислоты которая превращается в фолиниевую кислоту участвующую в синтезе нуклеиновых кислот.
81501. Обмен фенилаланина и тирозина. Фенилкетонурия; биохимический дефект, проявление болезни, методы предупреждения, диагностика и лечение 261.77 KB
  Тирозин условно заменимая аминокислота поскольку образуется из фенилаланина. Метаболизм феиилаланина Основное количество фенилаланина расходуется по 2 путям: включается в белки; превращается в тирозин. Превращение фенилаланина в тирозин прежде всего необходимо для удаления избытка фенилаланина так как высокие концентрации его токсичны для клеток.