83661

Методы расчета, основанные на свойствах линейных цепей

Лекция

Физика

Метод наложения Данный метод справедлив только для линейных электрических цепей и является особенно эффективным когда требуется вычислить токи для различных значений ЭДС и токов источников в то время как сопротивления схемы остаются неизменными. Аналитически принцип наложения для цепи содержащей n источников ЭДС и m источников тока выражается соотношением . 1 Здесь комплекс входной проводимости k – й ветви численно равный отношению тока к ЭДС в этой ветви при равных нулю ЭДС в остальных ветвях; комплекс взаимной ...

Русский

2015-03-15

165.5 KB

0 чел.

Лекция N 16

Методы расчета, основанные на свойствах линейных цепей

Выбор того или иного метода расчета электрической цепи в конечном итоге определяется целью решаемой задачи. Поэтому анализ линейной цепи не обязательно должен осуществляться с помощью таких общих методов расчета, как метод контурных токов или узловых потенциалов. Ниже будут рассмотрены методы, основанные на свойствах линейных электрических цепей и позволяющие при определенных постановках задач решить их более экономично.

 

Метод наложения

 

Данный метод справедлив только для линейных электрических цепей и является особенно эффективным, когда требуется вычислить токи для различных значений ЭДС и токов источников в то время, как сопротивления схемы остаются неизменными.

Данный метод основан на принципе наложения (суперпозиции), который формулируется следующим образом: ток в k – й ветви линейной электрической цепи равен алгебраической сумме токов, вызываемых каждым из источников в отдельности.

Аналитически принцип наложения для цепи, содержащей n источников ЭДС и m источников тока, выражается соотношением

.  

(1)

Здесь  - комплекс входной проводимости k – й ветви, численно равный отношению тока к ЭДС в этой ветви при равных нулю ЭДС в остальных ветвях;  - комплекс взаимной  проводимости k – й и i– й ветвей, численно равный отношению тока в k – й ветви и ЭДС в i– й ветви при равных нулю ЭДС в остальных ветвях.

Входные и взаимные проводимости можно определить экспериментально или аналитически, используя их указанную смысловую трактовку, при этом  , что непосредственно вытекает из свойства взаимности (см. ниже).

Аналогично определяются коэффициенты передачи тока , которые в отличие от проводимостей являются величинами безразмерными.

Доказательство принципа наложения можно осуществить на основе метода контурных токов.

Если решить систему уравнений, составленных по методу контурных токов, относительно любого контурного тока, например , то получим

,   

(2)

где  - определитель системы уравнений, составленный по методу контурных токов;  - алгебраическое дополнение определителя .

Каждая из ЭДС в (2) представляет собой алгебраическую сумму ЭДС в ветвях i–го контура. Если теперь все контурные ЭДС в (2) заменить алгебраическими суммами ЭДС в соответствующих ветвях, то после группировки слагаемых получится выражение для контурного тока  в виде алгебраической суммы составляющих токов, вызванных каждой из ЭДС ветвей в отдельности. Поскольку систему независимых контуров всегда можно выбрать так, что рассматриваемая h-я ветвь войдет только в один -й контур, т.е. контурный ток  будет равен действительному току  h-й ветви, то принцип наложения справедлив для токов  любых ветвей и, следовательно, справедливость принципа наложения доказана.

Таким образом, при определении токов ветвей при помощи метода наложения следует поочередно оставлять в схеме по одному источнику, заменяя остальные их внутренними сопротивлениями, и рассчитать составляющие искомых токов в этих схемах. После этого полученные результаты для соответствующих ветвей суммируются – это и будут искомые токи в ветвях исходной цепи.

В качестве примера использования метода наложения определим ток во второй ветви схемы на рис. 1,а.

Принимая источники в цепи на рис. 1,а идеальными и учитывая, что у идеального источника ЭДС внутреннее сопротивление равно нулю, а у идеального источника тока – бесконечности, в соответствии с методом наложения приходим к расчетным схемам на     рис. 1,б,в,г.

В этих цепях

;  ;  ,

где ; ; .

Таким образом,

.

В качестве другого примера использования метода определим взаимные проводимости  и  в цепи на рис. 2, если при переводе ключа в положение 1 токи в первой и второй ветвях соответственно равны  и , а при переводе в положение 2 -  и .

Учитывая, что в структуре пассивного четырехполюсника не содержится источников энергии, на основании принципа наложения для состояния ключа в положении “1” можно записать

;    

(3)

            

.    

(4)

При переводе ключа в положение “2” имеем

;    

(5)

..

(6)

Тогда, вычитая из уравнения (3) соотношение (5), а из (4)-(6), получим

;

,

откуда искомые проводимости

;      .

 

Принцип взаимности

Принцип взаимности основан на теореме взаимности, которую сформулируем без доказательства: для линейной цепи ток  в k – й ветви, вызванной единственной в схеме ЭДС , находящейся в i – й ветви,

будет равен току  в i – й ветви, вызванному ЭДС , численно равной ЭДС , находящейся в  k – й ветви,

.

Отсюда в частности вытекает указанное выше соотношение .

Иными словами, основанный на теореме взаимности принцип взаимности гласит: если ЭДС , действуя в некоторой ветви схемы, не содержащей других источников, вызывает в другой ветви ток  (см. рис. 3,а), то принесенная в эту ветвь ЭДС  вызовет в первой ветви такой же ток  (см. рис. 3,б).

В качестве примера использования данного принципа рассмотрим цепь на рис. 4,а, в которой требуется определить ток , вызываемый источником ЭДС .

Перенесение источника ЭДС  в диагональ моста, где требуется найти ток, трансформирует исходную схему в цепь с последовательно-параллельным соединением на рис. 4,б. В этой цепи

,

(7)

 

где .

В соответствии с принципом взаимности ток  в цепи на рис. 4,а равен току, определяемому соотношением (7)

.

Линейные соотношения в линейных электрических цепях

При изменении в линейной электрической цепи ЭДС (тока) одного из источников или сопротивления в какой-то ветви токи в любой паре ветвей m и n будут связаны между собой соотношением

(8)

где А и В – некоторые в общем случае комплексные константы.

Действительно, в соответствии с (1) при изменении ЭДС  в  k – й ветви для тока в m – й ветви можно записать

       

(9)

и для тока в n – й ветви –

.

(10)

Здесь  и  - составляющие токов соответственно в m – й и n – й ветвях, обусловленные всеми остальными источниками, кроме .

Умножив левую и правую части (10) на , вычтем полученное соотношением из уравнения (9). В результате получим

.  

(11)

Обозначив в (11)  и , приходим к соотношению (8).

Отметим, что в соответствии с законом Ома из уравнения (8) вытекает аналогичное соотношение для напряжений в линейной цепи.

В качестве примера найдем аналитическую зависимость между токами

 и  в схеме с переменным резистором на  рис. 5, где ; ; .

Коэффициенты А и В  можно рассчитать, рассмотрев любые два режима работы цепи, соответствующие двум произвольным значениям .

Выбрав в качестве этих значений  и , для первого случая ( ) запишем

.

Таким образом, .

При  (режим короткого замыкания)

,

откуда

.

На основании (8)

.

Таким образом,

.

 

Принцип компенсации

Принцип компенсации основан на теореме о компенсации, которая гласит: в любой электрической цепи без изменения токов в ее ветвях сопротивление в произвольной ветви можно заменить источником с ЭДС, численно равной падению напряжения на этом сопротивлении и действующей навстречу току в этой ветви.

Для доказательства теоремы выделим из схемы произвольную ветвь с сопротивлением , по которой протекает ток , а всю остальную часть схемы условно обозначим некоторым активным двухполюсником А (см. рис. 6,а).

При включении в ветвь с  двух одинаковых и действующих навстречу друг другу источников ЭДС с  (рис. 6,б) режим работы цепи не изменится. Для этой цепи

.   

(12)

Равенство (12) позволяет гальванически соединить точки а и c, то есть перейти к цепи на рис. 6,в. Таким образом, теорема доказана.

В заключение следует отметить, что аналогично для упрощения расчетов любую ветвь с известным током  можно заменить источником тока .

 

Литература

  1.  Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2.  Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3.  Каплянский А.Е. и др. Теоретические основы электротехники. Изд. 2-е. Учеб. пособие для электротехнических и энергетических специальностей вузов. –М.: Высш. шк., 1972. –448 с.

Контрольные вопросы и задачи

  1.  Для каких цепей применим принцип суперпозиции?
  2.  В каких случаях эффективно применение метода наложения?
  3.  Как определяются входные и взаимные проводимости ветвей?
  4.  Докажите теорему взаимности.
  5.  Какими линейными соотношениями связаны токи и напряжения в ветвях линейной цепи?
  6.  Можно ли распространить принцип компенсации на нелинейную электрическую цепь?
  7.  Определить методом наложения ток в первой ветви цепи на рис. 1,а.

Ответ: , где ; .

  1.  В цепи на рис. 2 . Определить токи в остальных ветвях схемы, воспользовавшись линейным соотношением, принципом компенсации и методом наложения.

Ответ: ; .

113


 

А также другие работы, которые могут Вас заинтересовать

27288. Экскурсионная деятельность 30.5 KB
  Методические приемы рассказа: прием экс. прием описания. прием характтикиопред. прием комментированияразъясняет смысл события или замысел автора.
27289. Маркет исследование 25 KB
  Маркет инф получается на основе первичных и вторичных данных. Первичные – получаются в результате спец провед маркет исслед для решения конкретной проблемы. источников для целей отличных от целей маркет исслед.
27290. Этапы развития туризма в России 28 KB
  Предпринимат 18901917 19221928 – появл общества тур направл они разраб экс маршруты путеводители организ речных и морск круизов 2 самых больших теплохода того вр формир курорты Крым и Кавказ формир предпр тур бизнеса Кавказская ривьера стр гостин разв экс деят период характ познаватэкс напр и становлением разл видов туризма. Организцентр 1928 301970 – создается всесоюзное добровольное общество пролетарского труизма и экс – ОПТЭ куда вошли орг по туризму была устан гос монополия общ Интурист – развитие ин туризма...
27291. Автомат информ системы 25 KB
  АИС можно отнести к классу очень сложных систем в связи с многозначностью различных структурных отношений между компонентами системы. АИС может быть определена как целый комплекс современных автоматизированных информационных технологий которые предназначены для информационного обслуживания. Современные АИС позволяют: 1.
27292. Туристская анимация 30 KB
  Анимация - новое направление в индустрии развлечений, это оживление отдыха и организация непосредственных впечатлений от личного участия в мероприятиях, т.е. через организацию деятельности. Aнимация в туризме начала развиваться как таковая с 70-х годов ХХ и только с середины 90-х она появилась в России.
27293. Имидж туристской фирмы 24 KB
  Имидж фирмы определяется многими факторами. Имидж предприятия формируется следующим образом. При создании имиджа прежде всего необходимо определить наиболее общий круг потребителей услуг турфирмы типичную клиентуру.
27294. Информационные системы в туризме 23.5 KB
  ИС – это система обработки, хранения и передачи какой-либо информации, которая представлена в определенной форме.
27295. История развития мирового туризма 28.5 KB
  До 15 в – паломничество европейцев – гл вид путеш. Средневековье – перекраивается полит карта Европы переселение народов распр христианства крестовые походы осн центры паломничества – Рим и Палестина привилегир класс – путеш к целебн источн происходит много географ открытий Сарбонна актуальными стали путеш с образоват целью и паломничество к святым местам. Конец 18 в нач 19 в –Гран туры с познават целью среди молод людей Европы наиб колво путеш соверш англич в Итал и Швейц попул туры к минер ист и на морск курорты втор полов 19 –...
27296. Формирование каналов сбыта 24 KB
  Функции: исследовательская работа (сбор инф), стимулирование сбыта (о товаре), установление контактов (связь с клиентами), приспособление товара (под требования покуп), проведение переговоров, организация товародвижения (транспорт. и склад. товара), финансирование, принятие риска (ответственность).