83668

Метод симметричных составляющих

Лекция

Физика

Симметричную систему прямой последовательности образуют см. Введя оператор поворота для симметричной системы прямой последовательности можно записать . Симметричная система обратной последовательности образована равными по модулю векторами и с относительным сдвигом по фазе на рад. Система нулевой последовательности состоит из трех векторов одинаковых по модулю и фазе см.

Русский

2015-03-15

158.5 KB

0 чел.

Лекция N 23

Метод симметричных составляющих

Метод симметричных составляющих относится к специальным методам расчета трехфазных цепей и широко применяется для анализа несимметричных режимов их работы, в том числе с нестатической нагрузкой. В основе метода лежит представление несимметричной трехфазной системы переменных (ЭДС, токов, напряжений и т.п.) в виде суммы трех симметричных систем, которые называют симметричными составляющими. Различают симметричные составляющие прямой, обратной и нулевой последовательностей, которые различаются порядком чередования фаз.

Симметричную систему прямой последовательности образуют (см. рис. 1,а) три одинаковых по модулю вектора  и  со сдвигом друг по отношению к другу на  рад., причем  отстает от , а  - от .

 

Введя, оператор поворота , для симметричной системы прямой последовательности можно записать

.

Симметричная система обратной последовательности образована равными по модулю

векторами  и  с относительным сдвигом по фазе на  рад., причем теперь  отстает от , а  - от  (см. рис. 1,б). Для этой системы имеем

.

Система нулевой последовательности состоит из трех векторов, одинаковых по модулю и фазе (см. рис. 1,в):

.

При сложении трех указанных систем векторов получается несимметричная система векторов (см. рис. 2).

Любая несимметричная система однозначно раскладывается на симметричные составляющие. Действительно,


;     

(1)

;  

(2)

(3)

  Таким образом, получена система из трех уравнений относительно трех неизвестных , которые, следовательно, определяются однозначно. Для нахождения  сложим уравнения (1)…(3). Тогда, учитывая, что , получим

(4)

Для нахождения  умножим (2) на , а (3) – на , после чего полученные выражения сложим с (1). В результате приходим к соотношению

.

(5)

Для определения  с соотношением (1) складываем уравнения (2) и (3), предварительно умноженные соответственно на  и . В результате имеем:

(6)

Формулы (1)…(6) справедливы для любой системы векторов , в том числе и для симметричной. В последнем случае .

В заключение раздела отметим, что помимо вычисления симметричные составляющие могут быть измерены с помощью специальных фильтров симметричных составляющих, используемых в устройствах релейной защиты и автоматики.

 

Свойства симметричных составляющих токов
и напряжений различных последовательностей

Рассмотрим четырехпроводную систему на рис. 3. Для тока в нейтральном проводе имеем

.

Тогда с учетом (4)


,

(7)

т.е. ток в нейтральном проводе равен утроенному току нулевой последовательности.

Если нейтрального провода нет, то  и соответственно нет составляющих тока нулевой последовательности.

Поскольку сумма линейных напряжений равна нулю, то в соответствии с (4) линейные напряжения не содержат составляющих нулевой последовательности.

Рассмотрим трехпроводную несимметричную систему на рис. 4.

Здесь

Тогда, просуммировав эти соотношения, для симметричных составляющих нулевой последовательности фазных напряжений можно записать

.

Если система ЭДС генератора симметрична, то из последнего получаем

.

(8)

Из (8) вытекает:

  •  в фазных напряжениях симметричного приемника отсутствуют симметричные составляющие нулевой последовательности;
  •  симметричные составляющие нулевой последовательности фазных напряжений несимметричного приемника определяются величиной напряжения смещения нейтрали;
  •  фазные напряжения несимметричных приемников, соединенных звездой, при питании от одного источника различаются только за счет симметричных составляющих нулевой последовательности; симметричные составляющие прямой и обратной последовательностей у них одинаковы, поскольку однозначно связаны

с соответствующими симметричными составляющими линейных напряжений.

При соединении нагрузки в треугольник фазные токи  и  могут содержать симметричные составляющие нулевой последовательности . При этом  (см. рис. 5) циркулирует по контуру, образованному фазами нагрузки.


Сопротивления симметричной трехфазной цепи
для токов различных последовательностей

Если к симметричной цепи приложена симметричная система фазных напряжений прямой (обратной или нулевой) последовательностей, то в ней возникает симметричная система токов прямой (обратной или нулевой) последовательности. При использовании метода симметричных составляющих на практике симметричные составляющие напряжений связаны с симметричными составляющими токов той же последовательности. Отношение симметричных составляющих фазных напряжений прямой (обратной или нулевой) последовательности к соответствующим симметричным составляющим токов называется комплексным сопротивлением прямой

,

обратной

и нулевой

последовательностей.

Пусть имеем участок цепи на рис. 6. Для фазы А этого участка можно записать

.  

(9)

Тогда для симметричных составляющих прямой и обратной последовательностей с учетом, того, что , на основании (9) имеем

         .

Отсюда комплексные сопротивления прямой и обратной последовательностей одинаковы и равны:

.

Для симметричных составляющих нулевой последовательности с учетом равенства  соотношение (9) трансформируется в уравнение

,

откуда комплексное сопротивление нулевой последовательности

.

В рассмотренном примере получено равенство сопротивлений прямой и обратной последовательностей. В общем случае эти сопротивления могут отличаться друг от друга. Наиболее типичный пример – различие сопротивлений вращающейся машины для токов прямой и обратной последовательностей за счет многократной разницы в скольжении ротора относительно вращающегося магнитного поля для этих последовательностей. 

 

Применение метода симметричных составляющих
для симметричных цепей

Расчет цепей методом симметричных составляющих основывается на принципе наложения, в виду чего метод применим только к линейным цепям. Согласно данному методу расчет осуществляется в отдельности для составляющих напряжений и токов различных последовательностей, причем в силу симметрии режимов работы цепи для них он проводится для одной фазы (фазы А). После этого в соответствии с (1)…(3) определяются реальные искомые величины. При расчете следует помнить, что, поскольку в симметричном режиме ток в нейтральном проводе равен нулю, сопротивление нейтрального провода никак ни влияет на симметричные составляющие токов прямой и обратной последовательностей. Наоборот, в схему замещения для нулевой последовательности на основании (7) вводится утроенное значение сопротивления в нейтральном проводе. С учетом вышесказанного исходной схеме на рис. 7,а соответствуют расчетные однофазные цепи для прямой и обратной последовательностей (рис. 7,б) и нулевой последовательности (рис. 7,в).

Существенно сложнее обстоит дело при несимметрии сопротивлений по фазам. Пусть в цепи на рис. 3 . Разложив токи на симметричные составляющие, для данной цепи можно записать

  

(10)

В свою очередь

(11)

Подставив в (11) значения соответствующих параметров из (10) после группировки членов получим

(12)

где ;

      

Из полученных соотношений видно, что если к несимметричной цепи приложена несимметричная система напряжений, то каждая из симметричных составляющих токов зависит от симметричных составляющих напряжений всех последовательностей. Поэтому, если бы трехфазная цепь на всех участках была несимметрична, рассматриваемый метод расчета не давал бы преимуществ. На практике система в основном является симметричной, а несимметрия обычно носит локальный характер. Это обстоятельство, как будет показано в следующей лекции, значительно упрощает анализ.

На всех участках цепи, где сопротивления по фазам одинаковы,  для i¹k. Тогда из (12) получаем

.

 

Литература

  1.  Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2.  Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

  1.  В каких случаях отсутствуют составляющие нулевой последовательности в линейных токах?
  2.  Для каких цепей сопротивления прямой и обратной последовательностей одинаковы, а для каких – различны?
  3.  Для анализа каких цепей возможно применение метода симметричных составляющих?
  4.  Как при использовании метода симметричных составляющих учитывается сопротивление в нейтральном проводе?
  5.  В чем заключается упрощение расчета цепи при использовании метода симметричных составляющих?
  6.  Определить коэффициент несимметрии линейных напряжений , если ,  .

Ответ: .

  1.  До короткого замыкания в фазе А в цепи на рис. 4 был симметричный режим, при котором ток в фазе А был равен .
  2.  Разложить токи на симметричные составляющие.

Ответ: ; .

  1.  Линейные напряжения на зажимах двигателя  и . Определить действующие значения токов в фазах двигателя, если его сопротивления прямой и обратной последовательностей соответственно равны: ; . Нейтральный провод отсутствует.

Ответ: ; ; .

161


 

А также другие работы, которые могут Вас заинтересовать

79972. Основы создания ресурсосберегающих и безотходных технологий 55 KB
  Основы создания ресурсосберегающих и безотходных технологий Значение материальных ресурсов в жизнедеятельности человека Для производства требуемого продукта необходимо взаимодействие трех составных частей: рабочей силы предметов труда сырье материалы полуфабрикаты комплектующие энергоресурсы информация и др. Отсутствие или ограниченное наличие какогонибудь из перечисленных ресурсов создает общенациональную или даже глобальную проблему связанную с экономической независимостью государства и нации. Решение экономических социальных и...
79973. Основы технологий машиностроительного производства 112 KB
  С технологической точки зрения сборочная единица собирается отдельно независимо от других элементов и в дальнейшем в процессе сборки выступает как одно целое. Производственный и технологический процессы Производственный процесс – это совокупность взаимосвязанных действий человека и оборудования направленных на превращение исходных сырья материалов полуфабрикатов в готовое изделие соответствующее определенному служебному назначению. В производственный процесс входят основной и вспомогательный процессы. Основные процессы – это те...
79974. Качество продукции машиностроения 464 KB
  При изготовлении заготовок при механической обработке контроле сборке возникают различного рода погрешности как отклонения параметров от требуемых. В зависимости от причин их вызывающих погрешности можно разделить на следующие виды: систематические постоянные и изменяемые закономерно и случайные. Систематические постоянные погрешности не изменяются при обработке заготовок в одной партии. Они возникают под воздействием постоянно действующих факторов погрешности оборудования оснастки управляющих программ станков с ЧПУ.
79975. Технологические средства повышения конкурентоспособности машиностроительной продукции 499.5 KB
  Базы поверхности заготовки ориентирующие ее при установке на станке. Технологические базы – поверхности определяющие положение заготовки в процессе обработки. Черновые технологические базы – это поверхности заготовки которые применяются на первых операциях при первом установе когда нет обработанных поверхностей. При установке заготовки в приспособлении для выполнения технологической операции должно обеспечиваться ориентирование осуществляемое базированием и неподвижность достигаемая закреплением заготовки.
79976. Основы проектирования технологических процессов материального производства 63.5 KB
  Разрабатываемый технологический процесс должен оптимально сочетать наиболее полные возможности оборудования режущего инструмента приспособления и другой технологической оснастки при оптимальных режимах обработки минимальных затратах то есть при наименьшей технологической себестоимости. Технологический процесс должен использовать прогрессивные методы обработки удовлетворять требованиям чертежей и техническим условиям должен быть гибким обеспечивать повышение производительности культуры производства экологической безопасности....
79977. Технико-экономическая оценка и выбор технологических решений на предприятии 50.5 KB
  Технически обоснованной нормой называется время необходимое на выполнение данной операции в мин. Кроме того нормы времени не учитывают непредвиденные условия: не вовремя поставлены материалы инструмент перебои с электроэнергией с транспортом и т. Время затраченное на изготовление одной детали на данной операции называется штучным. Тп 42 где То основное время; Тв – вспомогательное время; Тт.
79978. Системы технологий формообразующих операций в машиностроительном производстве 1.74 MB
  Заготовки полученные литейным способом Суть литейного производства состоит в том что фасонную деталь или заготовку изготавливают заливанием жидкого металла в литейную форму пустота которой по размерам и конфигурации соответствует детали. 1; выплавление металла; заливание металла в форму; затвердение металла и охлаждение отливки; выбивание отливки из формы; обрубка и очищение отливки; термическая обработка отливки; контроль за качеством отливки и сдача его на механическую обработку. В процессе выполнения операций необходимо обеспечивать...
79979. Обработка материалов резанием в технологических системах машиностроительного производства 795 KB
  Цель конструктивно-технологической классификации деталей − снижение трудоемкости и сокращение сроков технологической и конструкторской подготовки производства, а так же повышение эффективности системы управления производством.
79980. Основы технологии сборочного производства 48 KB
  По стадиям различают следующие виды сборки: предварительная сборка – разборка с целью определения размера компенсатора; промежуточная – для общей дальнейшей обработки сборочной единицы например корпус и собранная с ним крышка растачиваются совместно под размер диаметра подшипника; под сварку может вводиться как сборочная операция в поточной линии; окончательная сборка после которой разборки не предусмотрено. В зависимости от метода образования соединений существуют следующие виды сборки: слесарная – слесарносборочные операции; монтаж –...