83731

Решение дробных рациональных уравнений

Конспект урока

Математика и математический анализ

Цели урока: Обучающая: формирование понятия дробные рациональные уравнения; рассмотреть различные способы решения дробных рациональных уравнений; рассмотреть алгоритм решения дробных рациональных уравнений включающий условие равенства дроби нулю; обучить решению дробных рациональных уравнений по алгоритму...

Русский

2015-03-16

58.59 KB

4 чел.

Урок по теме "Решение дробных рациональных уравнений".

Учебник : «Алгебра 8», Ю.Н. Макарычев, Н.Г. Миндюк и др.,

Цели урока:

Обучающая:

  1.  формирование понятия дробные рациональные уравнения;
  2.  рассмотреть различные способы решения дробных рациональных уравнений;
  3.  рассмотреть алгоритм решения дробных рациональных уравнений, включающий условие равенства дроби нулю;
  4.  обучить решению дробных рациональных уравнений по алгоритму;

Развивающая:

  1.  развитие  логического мышления;
  2.  развитие  умения  сравнивать  и обобщать;
  3.  развитие  умения принимать решения;
  4.  развитие математического  кругозора, мышления и речи, внимания и памяти.

Воспитывающая:

  1.  воспитание познавательного интереса к предмету;
  2.  воспитание интереса к математике посредством использования современных компьютерных  технологий

Тип урока: изучение  нового материала.

Ход урока

  1.  Организационный момент.

Приветствие, отметить отсутствующих

Проверка готовности к уроку

  1.  Актуализация знаний.

Фронтальный опрос, устная работа с классом

  1.  Слайд №2 . Среди алгебраических выражений найди дробные рациональные выражения.

  1.   7у,    2)  +,  3)  (х-у)(+),   4)   -  ,  

                                             5)   -      6),     7)  ,     8) 

  1.  Устный опрос

Вопрос

Ожидаемый ответ

1

Какие  алгебраические выражения называются целыми?

Алгебраическое выражение, которое не содержит деления на выражения с  переменными, называется целым.

2

Какие  алгебраические выражения называются дробными?

Выражение, которое содержит деление на переменные, называется дробным.

3

Как  называются значения переменных, при которых алгебраическое выражение имеет смысл?

Значения переменных, при которых алгебраическое выражение имеет смысл, называются  областью допустимых значений 

1)  Целое выражение имеет смысл при любых значениях,

  входящих в него переменных, т. к. все действия с переменными выполнимы.

2)  Дробное выражение не имеет смысла при тех значениях переменных, при которых знаменатели величин равны нулю.

4

Что такое уравнение?

Равенство с переменной или переменными

5

Что такое корень уравнения?

Значение переменной, при котором уравнение обращается в верное равенство.

6

Какие уравнения вам знакомы?

Линейные

Квадратные

7

Способ решения линейных уравнений

Все с неизвестным перенести в левую часть уравнения, все числа -в правую. Привести подобные слагаемые. Найти неизвестный множитель

8

Что такое пропорция?

Равенство двух отношений

9

Основное свойство пропорции

Если пропорция верна, то произведение ее крайних членов равно произведению средних членов

10

Когда дробь равна нулю?

Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.

11

Какие свойства используются при решении уравнений?

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному уравнению.

Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

  1.  Объяснение нового материала

1.Все ли из этих уравнений вы сможете решить? Какие нет и почему? Слайд №3

  1.     3- 5(х +1) = 6 – 4х

                    =

                          

                 3.       2+ 3х 5=0


                 4.     -  = 2

      

                 5.      =

=

= х

6.       +  = х

-  =

Уравнения, в которых левая и правя часть, являются дробно-рациональными выражениями, называются дробные рациональные уравнения.

Сформулируйте тему урока.

Записываем тему урока «Решение дробных рациональных уравнений».

2. Какое уравнение можно решить ,  используя основное свойство пропорции. Слайд № 4

=

Решение:

2(х+1) = 7(х-3)

2х+2 = 7х – 21

2х – 7х = -21 -2

-5х = -23

х = -23 : (-5)

х = 4,6

Ответ: 4,6  

3.Какое  уравнение можно   решить, умножая обе части уравнения на знаменатель?  

Слайд № 5

= х

     Решение:

= х    (х-7)

8 = х(х-7)

8 = - 7х

- +7х + 8 = 0   /(-1)

- 7х -  8 = 0   

       

       Д =  = 49 4 = 81

= == -1         =  =  = 8

Ответ:   -1; 8

4.Решим  уравнение  одним из способов. Слайд № 6

+  = х

 -  = х

= х

= х    |)

3х – 9 = х(3-х)

3х – 9 = 3х -

 – 3х +3х – 9 = 0

 – 9 = 0

 =  9

х =  

х =  3  

Что такое корень уравнения? (Значение переменной, при котором уравнение обращается в верное равенство.)

 При выполнении проверки  ученики замечают, что приходится делить на нуль. Они делают вывод, что число  3  не является корнем  данного уравнения.  

Возникает вопрос: что же необходимо добавить в каждый из этих способов, чтобы исключить данную ошибку? ( исключить посторонние корни) ------ дописываем на доске неравенство знаменателя нулю или ОДЗ).

Здесь мы столкнулись с понятием
постороннего корня, т. е. это значение переменной, которое не входит в область определения дробно-рационального выражения.  

Ответ: -3

Что произошло с областью допустимых значений уравнения после  умножения  обеих частей уравнения на общий знаменатель? Она «расширилась» и теперь допустимыми стали любые значения переменных, то есть полученное уравнение не равносильно исходному.  Возникает вопрос: существует ли способ решения дробных рациональных уравнений, позволяющий исключить данную ошибку? Да, это способ основан на условие равенства дроби нулю.

Слайд № 7

5.    Найдите корни уравнения     = 0

                 = 0

                                                                              х

                                                                                 х = 2      или   х = 3

                                                                                 Ответ:  2;

Слайд  №8

6.    Найдите корни уравнения    

-  =

Перенесем  все в левую часть.

-  -  = 0    

 Приведем  дроби к общему знаменателю

  = 0

  = 0

Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.

Составим систему:

 

|:15

Д =  = 1 – 4 2(-1) = 1 + 8 = 9

=  =  = - 1,          =   =  =  = 0,5

Давайте попробуем сформулировать алгоритм решения дробных рациональных уравнений

Слайд № 9

Алгоритм решения дробных рациональных уравнений, если используется условие равенства дроби нулю

  1.  Перенести все в левую часть.
  2.  Привести дроби к общему знаменателю.
  3.  Составить систему: дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.
  4.  Решить уравнение.
  5.  Проверить неравенство, чтобы исключить посторонние корни.

Слайд № 10

Алгоритм решения дробных рациональных уравнений, если используется основное свойство пропорции

1. По свойству  пропорции: произведение крайних членов приравнять  произведению средних.

2. Решить полученное целое уравнение.

3. Исключить из корней те, которые обращают в нуль общий знаменатель.

Слайд № 11

Алгоритм решения дробных рациональных уравнений, если используется умножение обеих частей уравнения на общий знаменатель.

     1.  Найти общий знаменатель дробей, входящих в уравнение.

  1.  Умножить обе части уравнения на общий знаменатель, не равный нулю

  1.  Решить получившееся целое уравнение.

  1.  Произвести проверку корней, и исключить те из них, которые обращают в нуль общий знаменатель

IV  Закрепление полученных знаний

1.Назовите у каждого уравнения ОДЗ (слайд ).

1.   =

2.        2 +  = х

3.        +  = 1

4.        =

5.       +  =

6.      =

Каким из трех способов проще решить данные уравнения?

2.Работа по учебнику . Страница 134. №600 б,в,(у доски)ж (сам-но); № 601а,б, ж( у доски), д(сам-но).

 Учащиеся решают уравнения в парах, проверка решения  №600 ж , 601 д  по готовому решению.

V    Домашнее задание

  1.  Прочитать п.25 из учебника, разобрать примеры 1-3, стр 132-134
  2.  Выучить алгоритм решения дробных рациональных уравнений.
  3.  Решить в тетрадях № 600(а,г,д); №601(г,з).

VI   Подведение итогов урока

Сегодня на уроке мы с вами познакомились с дробными рациональными уравнениями, научились решать эти уравнения различными способами.

Дробные рациональные уравнения обычно решаются тремя способами:

1. Используя  условие равенства дроби нулю.

2. Используя  основное свойство пропорции.

3. Используя  умножение обеих частей уравнения на общий знаменатель.

Используя любой способ, не забудь произвести проверку корней, и исключить те из них, которые обращают в нуль общий знаменатель

Оценки.

     Всем спасибо, урок окончен.


 

А также другие работы, которые могут Вас заинтересовать

40760. Электрофизические, химические и электрохимические методы обработки и резки металлов и сплавов 606.64 KB
  Постоянно растущие требования к качеству, надежности и долговечности изделий делают актуальными создание и применение новых методов обработки упрочняющей технологии для повышения износостойкости, коррозионной стойкости, жаропрочности и других эксплуатационных характеристик.
40761. Индо-буддийский тип культуры 56.5 KB
  Культура Древней Индии: основные черты и особенности. Индо-буддийский тип культуры: картина мира и система ценностей. Художественная культура Индии. Буддизм и искусство.
40762. ОСОБЛИВІ ПОРЯДКИ КРИМІНАЛЬНОГО ПРОВАДЖЕННЯ 81.08 KB
  Законодавство України передбачає єдиний порядок кримінального провадження. Це логічно витікає із принципу рівності громадян перед законом і судом передбаченому Конституцією України. Разом з тим у зв’язку з існуванням особливих умов, таких як наприклад готовність сторін до компромісу, незначна суспільна небезпека злочину, особливий суб’єкт злочину та ін. процесуальний закон допускає провадження, яке відрізняється від звичайного.
40763. УКРАЇНСЬКА КУЛЬТУРА: СУТНІСТЬ І ВИТОКИ 55.99 KB
  Теоретичні засади історичної культурології Слово культура походить з латини. Згодом семантика цього слова істотно розширилася. Нині термін культура має надзвичайно велике смислове навантаження. Важливою характерною рисою культури є те що вона являє собою за словами видатного російського культуролога Ю...
40764. Загальнофілософські методи дослідження держави і права 46.68 KB
  Узагальнивши існуючі в літературі наукові погляди стосовно класифікації методів вважаємо за можливе виокремити наступні рівні прийомів вивчення субєкту теорії держави та права. Загальнофілософські методи складають світоглядову основу дослідження держави і права. Вони створюють основу для розвитку теорії держави і права.
40765. ПОНЯТИЕ МЕЖДУНАРОДНОГО МЕНЕДЖМЕНТА 35.09 KB
  ПОНЯТИЕ МЕЖДУНАРОДНОГО МЕНЕДЖМЕНТА Международный бизнес: сущность развитие характерные черты Перед определением категории международный менеджмент необходимо дать понятие категории международный бизнес как одной из основных форм предпринимательства заключающейся в сотрудничестве хозяйствующих субъектов 2 или более стран с целью извлечения выгоды. Это ключевой момент как в понимании природы и специфики международного бизнеса так и в объяснении возникновения и развития международного менеджмента. Периодизация развития международного...
40766. Стилістика як мовознавча дисципліна Стилістична система української мови. Стилістична норма 670.91 KB
  Стилістика як мовознавча дисципліна Стилістична система української мови. Стилістична норма Мета: поглибити знання студентів про систему стилів ознайомити студентів із стилістичними нормами набуття ними знань щодо стилістичних особливостей сучасної української літературної мови; вивчення особливостей функціонування офіційноділового наукового публіцистичного художнього та розмовного стилів розкрити усі параметри їх характеристик їх різновиди; розвивати вміння будувати висловлювання за даним стилем; виховувати мовне чуття яке...
40767. Ординалістська теорія поведінки споживача. Гранична норма заміщення благ: суть і методика обчислення 61.08 KB
  Криві байдужості як спеціальний інструментарій мікроекономічного аналізу. Карта байдужості. Із цієї гіпотези можна зробити висновок що криві байдужості випуклі до початку координат. Крива байдужості Залежність сукупної корисності від кількості двох товарів TU крива споживчої байдужості однакової сукупної корисності.
40768. МОДЕЛЮВАННЯ ПОВЕДІНКИ СПОЖИВАЧА НА РИНКУ ТОВАРІВ 138.97 KB
  Тоді формула бюджетного обмеження матиме вигляд: Гранична норма заміщення благом Х витрат споживача на інші блага виражається в грошовій формі й означає міру готовності пожертвувати можливістю витратити бюджет на інші блага задля споживання додаткової одиниці Х залишаючись на даній кривій байдужості.Побудова лінії Енгеля на основі лінії дохід ...