83731

Решение дробных рациональных уравнений

Конспект урока

Математика и математический анализ

Цели урока: Обучающая: формирование понятия дробные рациональные уравнения; рассмотреть различные способы решения дробных рациональных уравнений; рассмотреть алгоритм решения дробных рациональных уравнений включающий условие равенства дроби нулю; обучить решению дробных рациональных уравнений по алгоритму...

Русский

2015-03-16

58.59 KB

4 чел.

Урок по теме "Решение дробных рациональных уравнений".

Учебник : «Алгебра 8», Ю.Н. Макарычев, Н.Г. Миндюк и др.,

Цели урока:

Обучающая:

  1.  формирование понятия дробные рациональные уравнения;
  2.  рассмотреть различные способы решения дробных рациональных уравнений;
  3.  рассмотреть алгоритм решения дробных рациональных уравнений, включающий условие равенства дроби нулю;
  4.  обучить решению дробных рациональных уравнений по алгоритму;

Развивающая:

  1.  развитие  логического мышления;
  2.  развитие  умения  сравнивать  и обобщать;
  3.  развитие  умения принимать решения;
  4.  развитие математического  кругозора, мышления и речи, внимания и памяти.

Воспитывающая:

  1.  воспитание познавательного интереса к предмету;
  2.  воспитание интереса к математике посредством использования современных компьютерных  технологий

Тип урока: изучение  нового материала.

Ход урока

  1.  Организационный момент.

Приветствие, отметить отсутствующих

Проверка готовности к уроку

  1.  Актуализация знаний.

Фронтальный опрос, устная работа с классом

  1.  Слайд №2 . Среди алгебраических выражений найди дробные рациональные выражения.

  1.   7у,    2)  +,  3)  (х-у)(+),   4)   -  ,  

                                             5)   -      6),     7)  ,     8) 

  1.  Устный опрос

Вопрос

Ожидаемый ответ

1

Какие  алгебраические выражения называются целыми?

Алгебраическое выражение, которое не содержит деления на выражения с  переменными, называется целым.

2

Какие  алгебраические выражения называются дробными?

Выражение, которое содержит деление на переменные, называется дробным.

3

Как  называются значения переменных, при которых алгебраическое выражение имеет смысл?

Значения переменных, при которых алгебраическое выражение имеет смысл, называются  областью допустимых значений 

1)  Целое выражение имеет смысл при любых значениях,

  входящих в него переменных, т. к. все действия с переменными выполнимы.

2)  Дробное выражение не имеет смысла при тех значениях переменных, при которых знаменатели величин равны нулю.

4

Что такое уравнение?

Равенство с переменной или переменными

5

Что такое корень уравнения?

Значение переменной, при котором уравнение обращается в верное равенство.

6

Какие уравнения вам знакомы?

Линейные

Квадратные

7

Способ решения линейных уравнений

Все с неизвестным перенести в левую часть уравнения, все числа -в правую. Привести подобные слагаемые. Найти неизвестный множитель

8

Что такое пропорция?

Равенство двух отношений

9

Основное свойство пропорции

Если пропорция верна, то произведение ее крайних членов равно произведению средних членов

10

Когда дробь равна нулю?

Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.

11

Какие свойства используются при решении уравнений?

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному уравнению.

Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

  1.  Объяснение нового материала

1.Все ли из этих уравнений вы сможете решить? Какие нет и почему? Слайд №3

  1.     3- 5(х +1) = 6 – 4х

                    =

                          

                 3.       2+ 3х 5=0


                 4.     -  = 2

      

                 5.      =

=

= х

6.       +  = х

-  =

Уравнения, в которых левая и правя часть, являются дробно-рациональными выражениями, называются дробные рациональные уравнения.

Сформулируйте тему урока.

Записываем тему урока «Решение дробных рациональных уравнений».

2. Какое уравнение можно решить ,  используя основное свойство пропорции. Слайд № 4

=

Решение:

2(х+1) = 7(х-3)

2х+2 = 7х – 21

2х – 7х = -21 -2

-5х = -23

х = -23 : (-5)

х = 4,6

Ответ: 4,6  

3.Какое  уравнение можно   решить, умножая обе части уравнения на знаменатель?  

Слайд № 5

= х

     Решение:

= х    (х-7)

8 = х(х-7)

8 = - 7х

- +7х + 8 = 0   /(-1)

- 7х -  8 = 0   

       

       Д =  = 49 4 = 81

= == -1         =  =  = 8

Ответ:   -1; 8

4.Решим  уравнение  одним из способов. Слайд № 6

+  = х

 -  = х

= х

= х    |)

3х – 9 = х(3-х)

3х – 9 = 3х -

 – 3х +3х – 9 = 0

 – 9 = 0

 =  9

х =  

х =  3  

Что такое корень уравнения? (Значение переменной, при котором уравнение обращается в верное равенство.)

 При выполнении проверки  ученики замечают, что приходится делить на нуль. Они делают вывод, что число  3  не является корнем  данного уравнения.  

Возникает вопрос: что же необходимо добавить в каждый из этих способов, чтобы исключить данную ошибку? ( исключить посторонние корни) ------ дописываем на доске неравенство знаменателя нулю или ОДЗ).

Здесь мы столкнулись с понятием
постороннего корня, т. е. это значение переменной, которое не входит в область определения дробно-рационального выражения.  

Ответ: -3

Что произошло с областью допустимых значений уравнения после  умножения  обеих частей уравнения на общий знаменатель? Она «расширилась» и теперь допустимыми стали любые значения переменных, то есть полученное уравнение не равносильно исходному.  Возникает вопрос: существует ли способ решения дробных рациональных уравнений, позволяющий исключить данную ошибку? Да, это способ основан на условие равенства дроби нулю.

Слайд № 7

5.    Найдите корни уравнения     = 0

                 = 0

                                                                              х

                                                                                 х = 2      или   х = 3

                                                                                 Ответ:  2;

Слайд  №8

6.    Найдите корни уравнения    

-  =

Перенесем  все в левую часть.

-  -  = 0    

 Приведем  дроби к общему знаменателю

  = 0

  = 0

Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.

Составим систему:

 

|:15

Д =  = 1 – 4 2(-1) = 1 + 8 = 9

=  =  = - 1,          =   =  =  = 0,5

Давайте попробуем сформулировать алгоритм решения дробных рациональных уравнений

Слайд № 9

Алгоритм решения дробных рациональных уравнений, если используется условие равенства дроби нулю

  1.  Перенести все в левую часть.
  2.  Привести дроби к общему знаменателю.
  3.  Составить систему: дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.
  4.  Решить уравнение.
  5.  Проверить неравенство, чтобы исключить посторонние корни.

Слайд № 10

Алгоритм решения дробных рациональных уравнений, если используется основное свойство пропорции

1. По свойству  пропорции: произведение крайних членов приравнять  произведению средних.

2. Решить полученное целое уравнение.

3. Исключить из корней те, которые обращают в нуль общий знаменатель.

Слайд № 11

Алгоритм решения дробных рациональных уравнений, если используется умножение обеих частей уравнения на общий знаменатель.

     1.  Найти общий знаменатель дробей, входящих в уравнение.

  1.  Умножить обе части уравнения на общий знаменатель, не равный нулю

  1.  Решить получившееся целое уравнение.

  1.  Произвести проверку корней, и исключить те из них, которые обращают в нуль общий знаменатель

IV  Закрепление полученных знаний

1.Назовите у каждого уравнения ОДЗ (слайд ).

1.   =

2.        2 +  = х

3.        +  = 1

4.        =

5.       +  =

6.      =

Каким из трех способов проще решить данные уравнения?

2.Работа по учебнику . Страница 134. №600 б,в,(у доски)ж (сам-но); № 601а,б, ж( у доски), д(сам-но).

 Учащиеся решают уравнения в парах, проверка решения  №600 ж , 601 д  по готовому решению.

V    Домашнее задание

  1.  Прочитать п.25 из учебника, разобрать примеры 1-3, стр 132-134
  2.  Выучить алгоритм решения дробных рациональных уравнений.
  3.  Решить в тетрадях № 600(а,г,д); №601(г,з).

VI   Подведение итогов урока

Сегодня на уроке мы с вами познакомились с дробными рациональными уравнениями, научились решать эти уравнения различными способами.

Дробные рациональные уравнения обычно решаются тремя способами:

1. Используя  условие равенства дроби нулю.

2. Используя  основное свойство пропорции.

3. Используя  умножение обеих частей уравнения на общий знаменатель.

Используя любой способ, не забудь произвести проверку корней, и исключить те из них, которые обращают в нуль общий знаменатель

Оценки.

     Всем спасибо, урок окончен.


 

А также другие работы, которые могут Вас заинтересовать

63162. Ліси: хвойні, листяні, мішані 109.98 KB
  Корекційно-навчальна мета: формувати у дітей поняття ліс листяні ліси хвойні ліси мішані ліси; навчити розпізнавати види лісів за назвою та малюнками дерев. Обладнання: мультимедійна дошка проектор картки...
63163. Принципи здорового способу життя 20.74 KB
  Мета: Ознайомити учнів з поняттям €œздоровий спосіб життя продовжувати формувати в учнів активну мотивацію щодо дбайливого ставлення до власного здоров’я. Виховувати прагнення берегти своє здоров’я зважаючи на його цінність і значимість.
63165. Память как познавательный процесс 106 KB
  Память - это процессы организации и сохранения прошлого опыта, делающего возможным его повторное использование в деятельности или возвращение в сферу сознания. Память связывает прошлое человека с его настоящим и будущим и является важнейшей познавательной функцией
63166. Право як навчальний предмет. Мета, завдання, особливості курсу 22.77 KB
  Обладнання й матеріали: Конституція України Конвенція ООН про права дитини Загальна декларація прав людини плакати з висловами відомих людей про права людини. Мир прогрес права людини ці три цілі нерозривно повязані неможливо досягнути...
63167. Вступ до історії стародавнього світу 28.52 KB
  Мета: Сформувати уявлення про хронологічні межі та предмет історії стародавнього світу дати визначення понять стародавній світ історичне джерело археологічні памятки розвивати навички відліку часу до н. Після цього уроку учні зможуть...
63168. СЛОВ’ЯНИ ПІД ЧАС ВЕЛИКОГО ПЕРЕСЕЛЕННЯ НАРОДІВ 31.51 KB
  Мета: визначити територію, заняття й суспільні відносини союзів словянських племен, що стали базою, на якій виникла держава — Київська Русь; розвивати в учнів навички роботи з першоджерелами, історичною картою, блок-таблицями, схемами...
63169. Правознавство. Життя за правилами 21.63 KB
  Мета: познайомити учнів з правилами суспільного життя з ознаками правової норми сформувати розуміння необхідності дотримання законів і правил виховувати в учнів активну громадянську позицію.
63170. Виникнення людини. Залюднення Європи 27.2 KB
  Мета: дати уявлення про передумови виникнення людини; розглянути процес розселення пралюдей на території Європи; показати роль праці у виділенні людини з тваринного світу.