84441

Решение инженерной задачи методами вычислительной математики

Курсовая

Математика и математический анализ

В результате выполнения курсовой работы должен появиться навык и умение практического использования полученных знаний для решения некоторых теоретических и практических задач. Результаты сравнения представить в виде таблицы относительных погрешностей решения.

Русский

2015-03-19

459 KB

9 чел.

Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Пензенский государственный университет»

(ПГУ)

Кафедра «Автоматика и телемеханика»

Математические методы решения инженерных задач

Тема: Решение инженерной задачи методами вычислительной математики

Задания к курсовой работе (гр. 13ЗПА31)

Пенза 2015


1. ЦЕЛЕВАЯ УСТАНОВКА КУРСОВОЙ РАБОТЫ

Целью выполнения курсовой работы является закрепление знаний, полученных студентом в процессе изучения дисциплины.

В результате выполнения курсовой работы должен появиться навык и умение практического использования полученных знаний для решения некоторых теоретических и практических задач.

2. ЗАДАНИЯ

Задание №1.

  1.  Решить заданную систему обыкновенных дифференциальных уравнений (ОДУ) методом Рунге - Кутты 4-5-го порядка. Для этого разработать собственную программу в Matlab (программа должна быть представлена в виде m-файла), а также решить задачу с помощью решателя Matlab (использовать как эталонное решение).
  2.  В разработанной программе реализовать апостериорный выбор шага интегрирования (реализовать алгоритм, приведенный в [4]).
  3.  При решении стандартным решателем Matlab, использовать автоматический шаг.
  4.  Решение, полученное с помощью разработанной программы, сравнить с эталонным решением в точке . Результаты сравнения представить в виде таблицы относительных погрешностей решения. Сделать выводы о точности решения.
  5.  Построить отдельно графики , , , а также трехмерный график движения точки в декартовой системе координат средствами Matlab.
  6.  Создать видеофайл решения задачи: движение точки в трехмерной декартовой системе координат (представить на CD).

Варианты заданий.

№ п/п

Система ОДУ

Начальные условия

Граничные условия

0.0

0.5

0.0

6.0

0.0

0.1

0.0

6.0

0.1

0.0

0.0

6.0

0.0

0.0

0.1

6.0

0.1

0.0

0.0

6.0

0.0

0.0

0.5

6.0

0.0

0.5

0.0

6.0

0.1

0.0

0.0

6.0

0.0

0.0

0.1

6.0

0.1

0.0

0.0

6.0

0.1

0.0

0.5

6.0

0.1

0.0

0.0

6.0

0.0

0.0

0.1

6.0

0.0

1.0

0.0

6.0

0.1

0.3

0.0

6.0

0.1

0.0

0.1

6.0

0.1

0.1

0.0

6.0

0.0

0.0

0.1

6.0

0.1

0.0

0.0

6.0

0.5

0.0

0.5

6.0

0.0

0.0

0.5

6.0

0.0

0.0

0.1

6.0

1.0

0.0

0.0

6.0

0.0

1.0

0.0

6.0

0.0

0.0

1.0

6.0

1.0

0.0

0.0

6.0

0.0

1.0

0.0

6.0

0.0

0.0

1.0

6.0

1.0

0.0

0.0

6.0

0.0

0.5

0.0

6.0

Задание №2.

  1.  Провести условную минимизацию заданной функции нескольких переменных на основе применения генетического алгоритма (ГА), программно реализованного в Matlab (использовать только стандартную функцию).
  2.  Составить программу решения задачи в Matlab в виде m-файла (не использовать окно тулбокса !!!).
  3.  Для настройки ГА использовать функцию gaoptimset. Все задаваемые опции прописать в разработанной программе явным образом.
  4.  Провести исследования работы ГА с необходимыми графическими иллюстрациями в соответствии с вариантом (анализ провести на основе графика).

Варианты заданий.

Вариант № 1.

 Дана следующая функция:

,

где   - целая часть числа.

  1.  Построить график заданной функции при n = 2. Определить визуально, имеет ли данная функция глобальный минимум.
  2.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.

 Найти минимум данной функции при следующих значениях n:

1) n = 2;

2) n = 15;

3) n = 100.

  1.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  2.  Результат определить как среднее по 60 решениям.
  3.  В отчете отразить ход решения задачи:

- результаты решения (значения целевой функции) представить в виде таблицы, сделать вывод о точности решения при различном n;

- представить график масштабирования целевой функции;

- провести исследование зависимости решения от числа поколений между последовательными вызовами функции вывода (при n = 2).

Вариант № 2.

Дана следующая функция:

,

где  .

  1.  Построить график заданной функции при n = 2. Определить визуально, имеет ли данная функция глобальный минимум.
  2.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.

 Найти минимум данной функции при следующих значениях n:

1) n = 2;

2) n = 20;

3) n = 150.

  1.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  2.  Результат определить как среднее по 60 решениям.
  3.  В отчете отразить ход решения задачи:

- результаты решения (значения целевой функции) представить в виде таблицы, сделать вывод о точности решения при различном n;

- представить график, иллюстрирующий процесс образования потомков из родителей;

- провести исследование зависимости решения от вида направления миграции (при n = 2).

Вариант № 3.

Дана следующая функция:

.

  1.  Построить график заданной функции. Определить визуально, имеет ли данная функция глобальный минимум.
  2.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  3.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  4.  Результат определить как среднее по 50 решениям.
  5.  В отчете отразить ход решения задачи:

- представить график лучших, худших и средних особей по поколениям;

- провести исследование зависимости решения от вида функции отбора родителей для кроссинговера и мутации потомков.

Вариант № 4.

Дана следующая функция:

.

  1.  Построить график заданной функции. Определить визуально, имеет ли данная функция глобальный минимум.
  2.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  3.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  4.  Результат определить как среднее по 40 решениям.
  5.  В отчете отразить ход решения задачи:

- представить график оценки разнообразия итоговой популяции в виде гистограммы расстояний между особями;

- провести исследование зависимости решения от вида функции отбора родителей для кроссинговера и мутации потомков.

Вариант № 5.

Дана следующая функция:

.

  1.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  2.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  3.  Результат определить как среднее по 50 решениям.
  4.  В отчете отразить ход решения задачи:

- представить график значений целевой переменной для особей последнего поколения.

- провести исследование зависимости решения от вида масштабирования функции приспособленности.

Вариант № 6.

Дана следующая функция:

.

  1.  Построить график заданной функции. Определить визуально, имеет ли данная функция глобальный минимум.
  2.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  3.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  4.  Результат определить как среднее по 60 решениям.
  5.  В отчете отразить ход решения задачи:

- представить график количества потомков для каждой родительской особи начальной популяции;

- провести исследование зависимости решения от вида кроссинговера.

Вариант № 7.

Дана следующая функция:

.

  1.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  2.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  3.  Результат определить как среднее по 30 решениям.
  4.  В отчете отразить ход решения задачи:

- представить график, иллюстрирующий выполнение правил останова алгоритма;

- провести исследование зависимости решения от размера популяции.

Вариант №8.

Дана следующая функция:

, .

  1.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  2.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  3.  Результат определить как среднее по 40 решениям.
  4.  В отчете отразить ход решения задачи:

- представить график средних и наилучших по поколениям значений целевой функции.

- провести исследование зависимости решения от вида мутации потомков.

Вариант №9.

 Дана следующая функция:

.

  1.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  2.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  3.  Результат определить как среднее по 50 решениям.
  4.  В отчете отразить ход решения задачи:

- представить график итоговых значений переменных, соответствующих найденной точке минимума целевой функции (для заданных n);

- провести исследование зависимости решения от доли мигрирующих особей для каждой подпопуляции.

Вариант №10.

Дана следующая функция:

.

  1.  Построить график заданной функции при n = 2. Определить визуально, имеет ли данная функция глобальный минимум.
  2.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.

 Найти минимум данной функции при следующих значениях n:

1) n = 2;

2) n = 20;

3) n = 150.

  1.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  2.  Результат определить как среднее по 30 решениям.
  3.  В отчете отразить ход решения задачи:

- результаты решения (значения целевой функции) представить в виде таблицы, сделать вывод о точности решения при различном n;

- представить график изменения среднего расстояния по поколениям между особями популяции (для заданных n);

- провести исследование зависимости решения от числа поколений между последовательными вызовами функции вывода (при n = 2).

Вариант № 11.

Дана следующая функция:

.

  1.  Построить график заданной функции при n = 2. Определить визуально, имеет ли данная функция глобальный минимум.
  2.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.

 Найти минимум данной функции при следующих значениях n:

1) n = 2;

2) n = 20;

3) n = 100.

  1.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  2.  Результат определить как среднее по 30 решениям.
  3.  В отчете отразить ход решения задачи:

- результаты решения (значения целевой функции) представить в виде таблицы, сделать вывод о точности решения при различном n;

- представить график, иллюстрирующий процесс образования потомков из родителей (для заданных n);

- провести исследование зависимости решения от числа поколений между последовательными вызовами функции вывода (при n = 2).

Вариант № 12.

 Дана следующая функция:

,

где .

  1.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  2.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  3.  Результат определить как среднее по 35 решениям.
  4.  В отчете отразить ход решения задачи:

- представить график, иллюстрирующий выполнение правил останова алгоритма;

- провести исследование зависимости решения от размера популяции.

Вариант № 13.

Дана следующая функция:

.

  1.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.

 Найти минимум данной функции при следующих значениях n:

1) n = 4;

2) n = 20;

3) n = 100.

  1.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  2.  Результат определить как среднее по 30 решениям.
  3.  В отчете отразить ход решения задачи:

- результаты решения (значения целевой функции) представить в виде таблицы, сделать вывод о точности решения при различном n;

- представить график изменения среднего расстояния по поколениям между особями популяции (при различном n);

- провести исследование зависимости решения от вида направления миграции (при n = 4).

Вариант № 14.

Дана следующая функция:

  1.  Построить график заданной функции при n = 2. Определить визуально, имеет ли данная функция глобальный минимум.
  2.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  3.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  4.  Результат определить как среднее по 30 решениям.
  5.  В отчете отразить ход решения задачи:

- представить график масштабирования целевой функции;

- провести исследование зависимости решения от вида функции отбора родителей для кроссинговера и мутации потомков.

Вариант № 15.

Дана следующая функция:

  1.  Построить график заданной функции. Определить визуально, имеет ли данная функция глобальный минимум.
  2.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  3.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  4.  Результат определить как среднее по 25 решениям.
  5.  В отчете отразить ход решения задачи:

- представить график значений целевой переменной для особей последнего поколения.

- провести исследование зависимости решения от доли мигрирующих особей для каждой подпопуляции.

Вариант № 16.

Дана следующая функция:

.

  1.  Построить график заданной функции. Определить визуально, имеет ли данная функция глобальный минимум.
  2.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  3.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  4.  Результат определить как среднее по 30 решениям.
  5.  В отчете отразить ход решения задачи:

- представить график средних и наилучших по поколениям значений целевой функции;

- провести исследование зависимости решения от вида функции отбора родителей для кроссинговера и мутации потомков.

Вариант № 17.

Дана следующая функция:

  1.  Построить график заданной функции. Определить визуально, имеет ли данная функция глобальный минимум.
  2.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  3.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  4.  Результат определить как среднее по 40 решениям.
  5.  В отчете отразить ход решения задачи:

- представить график масштабирования целевой функции;

- провести исследование зависимости решения от числа элитных потомков.

Вариант № 18.

Дана следующая функция:

,  ,

где [] – целая часть числа.

  1.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  2.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  3.  Результат определить как среднее по 40 решениям.
  4.  В отчете отразить ход решения задачи:

- представить график оценки разнообразия итоговой популяции в виде гистограммы расстояний между особями;

- провести исследование зависимости решения от максимального числа итераций алгоритма.

Вариант № 19.

Дана следующая функция:

, .

  1.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  2.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  3.  Результат определить как среднее по 40 решениям.
  4.  В отчете отразить ход решения задачи:

- представить график количества потомков для каждой родительской особи начальной популяции.

- провести исследование зависимости решения от вида масштабирования функции приспособленности.

Вариант № 20.

Дана следующая функция:

,   ,

где  .

  1.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  2.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  3.  Результат определить как среднее по 40 решениям.
  4.  В отчете отразить ход решения задачи:

- представить график масштабирования целевой функции;

- провести исследование зависимости решения от вида масштабирования функции приспособленности.

Вариант № 21.

Дана следующая функция:

  1.  Построить график заданной функции при n=2. Определить визуально, имеет ли данная функция глобальный минимум.
  2.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.

 Найти минимум данной функции при следующих значениях n:

1) n = 4;

2) n = 6;

3) n = 7.

  1.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  2.  Результат определить как среднее по 40 решениям.
  3.  В отчете отразить ход решения задачи:

- результаты решения (значения целевой функции) представить в виде таблицы, сделать вывод о точности решения при различном n;

- представить график количества потомков для каждой родительской особи начальной популяции (при различном n);

- провести исследование зависимости решения от числа поколений между последовательными вызовами функции вывода (при n = 4).

Вариант № 22.

Дана следующая функция:

где  .

  1.  Построить график заданной функции при n=2. Определить визуально, имеет ли данная функция глобальный минимум.
  2.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.

 Найти минимум данной функции при следующих значениях n:

1) n = 2;

2) n = 10;

3) n = 90.

  1.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  2.  Результат определить как среднее по 40 решениям.
  3.  В отчете отразить ход решения задачи:

- результаты решения (значения целевой функции) представить в виде таблицы, сделать вывод о точности решения при различном n;

- представить график средних и наилучших по поколениям значений целевой функции (при различном n).

- провести исследование зависимости решения от вероятности кроссинговера (при n = 2).

Вариант № 23.

Дана следующая функция:

.

  1.  Построить график заданной функции. Определить визуально, имеет ли данная функция глобальный минимум.
  2.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  3.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  4.  Результат определить как среднее по 100 решениям.
  5.  В отчете отразить ход решения задачи:

- представить график итоговых значений переменных, соответствующих найденной точке минимума целевой функции;

- провести исследование зависимости решения от вида мутации потомков.

Вариант № 24.

Дана следующая функция:

.

  1.  Построить график заданной функции. Определить визуально, имеет ли данная функция глобальный минимум.
  2.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  3.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  4.  Результат определить как среднее по 70 решениям.
  5.  В отчете отразить ход решения задачи:

- представить график изменения среднего расстояния по поколениям между особями популяции;

- провести исследование зависимости решения от числа элитных потомков.

Вариант № 25.

Дана следующая функция:

  1.  Построить график заданной функции при n=2. Определить визуально, имеет ли данная функция глобальный минимум.
  2.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.

 Найти минимум данной функции при следующих значениях n:

1) n = 2;

2) n = 30;

3) n = 150.

  1.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  2.  Результат определить как среднее по 40 решениям.
  3.  В отчете отразить ход решения задачи:

- результаты решения (значения целевой функции) представить в виде таблицы, сделать вывод о точности решения при различном n;

- представить график масштабирования целевой функции (при различном n);

- провести исследование зависимости решения от вида кроссинговера (при n = 2).

Вариант № 26.

Дана следующая функция:

.

  1.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  2.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  3.  Результат определить как среднее по 50 решениям.
  4.  В отчете отразить ход решения задачи:

- представить график, иллюстрирующий процесс образования потомков из родителей;

- провести исследование зависимости решения от предельного значения функции приспособленности.

Вариант № 27.

Дана следующая функция:

,

где  [] – целая часть.

  1.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  2.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  3.  Результат определить как среднее по 100 решениям.
  4.  В отчете отразить ход решения задачи:

- представить график лучших, худших и средних особей по поколениям;

- провести исследование зависимости решения от вида масштабирования функции приспособленности.

Вариант № 28.

Дана следующая функция:

  1.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.

 Найти минимум данной функции при следующих значениях n:

1) n = 4;

2) n = 16;

3) n = 100.

  1.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  2.  Результат определить как среднее по 40 решениям.
  3.  В отчете отразить ход решения задачи:

- результаты решения (значения целевой функции) представить в виде таблицы, сделать вывод о точности решения при различном n;

- представить график оценки разнообразия итоговой популяции в виде гистограммы расстояний между особями (при различном n);

- провести исследование зависимости решения от вероятности кроссинговера (при n = 4).

Вариант № 29.

Дана следующая функция:

  1.  Построить график заданной функции. Определить визуально, имеет ли данная функция глобальный минимум.
  2.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.
  3.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  4.  Результат определить как среднее по 30 решениям.
  5.  В отчете отразить ход решения задачи:

- представить график значений целевой переменной для особей последнего поколения;

- провести исследование зависимости решения от вида мутации потомков.

Вариант № 30.

Дана следующая функция:

,

где  ;

.

  1.  Построить график заданной функции при n=2. Определить визуально, имеет ли данная функция глобальный минимум.
  2.  Провести оптимизацию заданной функции в Matlab (с помощью генетического алгоритма): найти глобальный минимум.

 Найти минимум данной функции при следующих значениях n:

1) n = 2;

2) n = 30;

3) n = 150.

  1.  Для решения задачи составить программу на языке программирования Matlab (m-файл).
  2.  Результат определить как среднее по 50 решениям.
  3.  В отчете отразить ход решения задачи:

- результаты решения (значения целевой функции) представить в виде таблицы, сделать вывод о точности решения при различном n;

- представить график количества потомков для каждой родительской особи начальной популяции (при различном n);

- провести исследование зависимости решения от вида мутации потомков (при n = 2).

3. ПОРЯДОК ОФОРМЛЕНИЯ РАБОТЫ

Курсовая работа должна иметь титульный лист, содержание, условия задач, решение задач, выводы, список использованной литературы. Курсовая работа представляется в формате Word 2003 (шрифт Times New Roman, 14 пт., межстрочный интервал – 1,5) с необходимым количеством иллюстраций (графики, диаграммы, таблицы). Тексты программ привести в Приложении.

4. ЛИТЕРАТУРА

1. Дьяконов В., Круглов В. Математические пакеты расширения Matlab. Специальный справочник – Спб.: Питер, 2001, 480 с.

2. Кетков Ю.Л., Кетков А.Ю., Шульц М.М. MATLAB 7: программирование, численные методы - Спб.: БХВ-Петербург, 2005, 752 с.

3. Банди Б. Методы оптимизации. М. Радио и связь. 1988.

4. Формалев В.Ф., Ревизников Д.Л. Численные методы. – М.: ФИЗМАТЛИТ, 2004, 400 с.

5. Панченко Т.В. Генетические алгоритмы. – Астрахань: ИД «Астраханский университет», 2007, 87 с.


Министерство образования и науки Российской Федерации

Пензенский государственный университет

Кафедра «Автоматика и телемеханика»

Пояснительная записка

к курсовой работе по дисциплине

«Математические методы решения инженерных задач»

на тему «_________»

Вариант № ___

Выполнил: студент группы _______

________________

Проверил:    

Пенза, 2015


Реферат

Пояснительная записка содержит __ листов формата А4, __ рисунков, 1 приложение, ___ источника.

ЗАДАЧА КОШИ, ОДУ, МЕТОД РУНГЕ-КУТТЫ, ОПТИМИЗАЦИЯ, ГЕНЕТИЧЕСКИЙ АЛГОРИТМ, MATLAB, ПРОГРАММА.

Цель работы – решение задачи Коши для системы ОДУ и оптимизация функции нескольких переменных методом генетического алгоритма в Matlab.

 В результате выполнения курсовой работы решена задача интегрирования системы ОДУ методом Рунге-Кутты, осуществлена оптимизация заданной функции методом генетического алгоритма. Все задачи решены с использованием программы Matlab с представлением необходимой графической и табличной информации.

Содержание

Введение     

1 Задание на курсовую работу                                                                                                                    

2 Решение задачи Коши для системы ОДУ                                                                                      

3 Оптимизация функции многих переменных методом ГА                                                                              

Заключение                                                                                                                     

Список использованных источников                                                                          

Приложение                                                                                                                   


Изм.

Лист

докум.

Подп.

Дата

Лист

Разраб.

Пров.

Н. Контр.

 контр.

Утв.

Лит.

Листов


 

А также другие работы, которые могут Вас заинтересовать

42803. Электроиндуцированные упругие деформации в кристаллах ниобата лития 329.46 KB
  Точечная группа симметрии: 3m. Приложено электрическое поле В см под углом 600 к главной оси симметрии. Область науки в задачу которой входит описание и объяснение структуры кристаллов на основе законов симметрии и пространственных соотношений расстояний между атомами называется кристаллографией. Поскольку в данном кристалле имеется ось симметрии третьего порядка то использование метода прямой проверки в декартовых координатах невозможно.
42804. Разработка программного обеспечения, ведение базы данных “Прокат видеокассет” 2.21 MB
  Видеотека Имя поля Тип данных Названиеописание Длина поля Код кассеты Numeric Указывается код видеокассеты. 5 Жанр Numeric Указывается жанр фильма. 10 Наименование Chrcter Указывается название кассеты. 18 Режиссер Chrcter Указывается режиссер данной видеокассеты.
42805. Сравнительная характеристика автоматической двухшпиндельной вакуум-закаточной машины 2.16 MB
  1 СВЕДЕНИЯ ОБ ОБЬЕКТЕ ОБРАБОТКИ Для производства жестяных банок необходима жесть уплотняющие материалы. При производстве цельно штамповочных банок требуется жесть уплотняющие материалы и материал для смазки жести перед штамповкой банок. Кроме того для производства консервных банок используют белую лакированную жесть электролитического лужения она более экономична так как толщина оловянного покрытия составляет 061мКр. Жесть черная рулонная лакированная применяют для...
42806. Использование переходных металлов и их соединений в технологии сенсорных микро-наносистем 313.59 KB
  Настоятельная необходимость отслеживать все аспекты состояния окружающей среды в реальном времени постоянно растет, и это вызвано возрастающими связями загрязнения окружающей среды с нашим здоровьем и безопасностью. Необходимо также иметь возможность определять содержание основных компонентов и примесей в различных средах.
42807. Анализ конструкции мобильного телефона Samsung i8910 HD с использованием методик FMEA и FTA 7.54 MB
  Попытки научного подхода к оценке качества предпринимались давно. Так, еще в 1930 г. немецкий доктор-инженер К. Комментц установил для кораблей, предназначенных для мелководья, что всякое уменьшение осадки судов на 1 % приводит к повышению цены на 0,6%. Несколько более сложным у него оказалось влияние вместимости судна и других параметров качества.
42808. Технология швейного производства на примере РУП «БХПО» 2.6 MB
  Совершенствование швейного производства предусматривает внедрение высокопроизводительного оборудования поточных линий расширение ассортимента и улучшение качества одежды выпуск изделий пользующихся повышенным спросом. Технология современного швейного производства все более становится механической ее эффективность в первую очередь зависит от применяемого оборудования. Выбор швейного оборудования зависит от особенностей обрабатываемых изделий и материалов. Механизация и автоматизация производства приводит к расширению перечня используемого...
42809. Система управления перемещением механизма 1.74 MB
  Функциональная схема установки На функциональной схеме введены следующие обозначения: КВ КН контакторы движения: вперёд и назад; S1 S2 S3 сигнал с конечным выключателем положений 1 2 3; S4 сигнал с кнопки; S5 сигнал с кнопки “Стоп†в режиме автомат; S6 сигнал выбора режима автомат или наладка; S7 сигнал движения вперёд в режиме наладка; S8 сигнал движения назад в режиме наладка; ПУУ проектирующие управляющие устройство; УВВ устройство выдержки времени; Хв сигнал управления контактором движения вперёд; Хн сигнал...
42810. Расчет районной электрической сети 471.49 KB
  1 Расчет баланса мощности 6 1.1 Расчет баланса мощности 1 Определение полной мощности для каждого потребителя: Таблица 1: Сведения о потребителях N P МВт cosϕ Uн кВ 1 33 094 10 2 34 092 10 3 134 078 6 4 34 085 10 2 Определение реактивной мощности для каждого потребителя: 3 Определение потерь активной мощности: Принимаем что они равны 5 от активной мощности iго потребителя 4 Определение реактивных потерь: Зарядную мощность линий а также потери реактивной мощности в линии не учитываем. Принимаем что они составляют 6 от...
42811. Мораль: понятие, источники, значение для Современной России 56.98 KB
  Особая роль принадлежит морали в формировании сознания, внутреннего мира и мировоззрения, активной жизненной позиции, мораль является важнейшим социальным регулятором, который входит в систему общественных отношений. Мораль имеет серьезное воздействие на развитие совершенствование многих сфер человеческой жизнедеятельности, поскольку она присуща всем сферам, где есть контакт между людьми.