84486

Рецептори, їх класифікація та збудження

Доклад

Биология и генетика

Рецептори – спеціалізовані структури що забезпечують: а сприйняття інформації про дію подразника; б первинний аналіз цієї інформації сила якість час дії новизна подразника. За наявністю спеціалізованої сенсорної клітини: первинні – інформація про дію подразника сприймається безпосередньо нервовим закінченням; вторинні – інформації про дію подразника сприймається спеціалізованою сенсорною рецепторною клітиною а далі передається на нервове закінчення. За наявністю чи відсутністю допоміжних структур: вільні нервові закінчення –...

Украинкский

2015-03-19

45.25 KB

1 чел.

Рецептори, їх класифікація та збудження.

Рецептори – спеціалізовані структури, що забезпечують:

а) сприйняття інформації про дію подразника;

б) первинний аналіз цієї інформації (сила, якість, час дії, новизна подразника).

в) кодування інформації.

Існують різні класифікації рецепторів, в основі яких лежать різні властивості рецепторів:

1. За психофізіологічними відчуттями, що виникають при збудженні рецепторів, вони поділяються на:

  1.  зорові;
  2.  слухові;
  3.  смакові;
  4.  нюхові;
  5.  термічні;
  6.  кінетостатичні, тощо.

2. За особливостями будови:

2.1. За наявністю спеціалізованої сенсорної клітини:

  1.  первинні – інформація про дію подразника сприймається безпосередньо нервовим закінченням;
  2.  вторинні – інформації про дію подразника сприймається спеціалізованою сенсорною (рецепторною) клітиною, а далі передається на нервове закінчення.

2.2. За наявністю чи відсутністю допоміжних структур:

  1.  вільні нервові закінчення – допоміжних структур не мають;
  2.  рецептори, що мають допоміжні структури (більшість); усі допоміжні структури створюють оптимальні умови для сприйняття рецептором інформації про дію адекватного подразника (подразник, до дії котрого рецептор спеціалізований у ході еволюції);

3. За природою адекватного подразника:

  1.  механорецептори;
  2.  хеморецептори;
  3.  терморецептори;
  4.  фоторецептори.

4. За локалізацією:

  1.  екстерорецептори – сприймають інформацію про дію зовнішніх чинників (шкірні рецептори, зорові, тощо);
  2.  інтерорецептори – сприймають інформацію про дію внутрішніх чинників (вісцерорецептори, пропріорецептори, тощо);

5. За швидкістю адаптації:

  1.  рецептори, що швидко адаптуються (дотикові рецептори шкіри);
  2.  рецептори, що адаптуються з середньою швидкістю (більшість рецепторів);
  3.  рецептори, що повільно адаптуються (вестибулярні).

У структурі більшості рецепторів виділяють такі елементи:

- власне сприймаюча структура – нервове закінчення (первинні рецептори) чи спеціалізована сенсорна клітина (вторинні), що забезпечує сприйняття інформації про дію подразника;

- генеруюча структура – найближчий до нервового закінчення перехват Ранв’є, що генерує серію ПД (аферентний сигнал) про дію подразника;

- допоміжний апарат – сукупність структур, що забезпечують найоптимальніші умови для сприйняття рецептором інформації про дію адекватного подразника. Допоміжний апарат може бути влаштований дуже просто (сполучнотканинна капсула) чи дуже складно (усі структури ока окрім паличок та колбочок).

Розглянемо механізм збудження рецепторів на прикладі тільця Фатер-Пачіні.

При дії на рецептор адекватного подразника (П) – тиск на шкіру  деформується його капсула (допоміжний апарат)  деформація мембрани нервового закінчення (сприймаюча структура)  зміна проникності мембрани для іонів натрію  вхід іонів до нервового закінчення за градієнтом концентрації  деполяризація мембрани  місцеве збудження, яке ще називають рецепторним потенціалом (РП). Цей потенціал, як і будь-яке місцеве збудження підкоряється законам силових відношень, сумується, поширюється на малу відстань за рахунок місцевих струмів, супроводжується підвищенням збудливості мембрани.

РП поширюється на сусідні ділянки мембрани за рахунок місцевих струмів, що мають напрямок від "+" до "-" (катодний) і у першому перехваті Ранв’є спричиняють деполяризацію мембрани перехвату; якщо деполяризація дійде до критичного рівня, на мембрані виникає серія ПД – аферентний нервовий сигнал.

Механізм збудження вторинних рецепторів принципово не відрізняється від вищеописаного. Проте, інформація про дію подразника сприймається спеціалізованою сенсорною клітиною. Під впливом подразника мембрана клітини збільшує проникність для Na+  вхід їх до клітини  деполяризація мембрани (місцеве збудження, РП)  виділення клітиною медіатора в синаптичну щілину  дифузія його до мембрани нервового закінчення  взаємодія з мембранними циторецепторами нервового закінчення  збільшення проникності мембрани для Na+  вхід їх до нервового закінчення  деполяризація мембрани закінчення (місцеве збудження, генераторний потенціал, ГП). ГП за допомогою місцевих струмів поширюється на мембрану перехвату (катодний напрямок). Це деполяризує цю мембрану. Якщо деполяризація досягає критичного рівня, виникає серія ПД. При збудженні рецепторів ПД виникає лише у перехватах Ранв’є. Решта структур рецептора (мембрана нервового закінчення, мембрана сенсорної клітини) відповідають на подразнення лише місцевим збудженням (РП, ГП). Це важлива особливість збудження рецепторів, оскільки властивості місцевого рецептора забезпечують аналіз інформації вже на рівні рецепторів.

Механізм кодування інформації у рецепторах. Адаптація рецепторів.

Кодування інформації у рецепторах – процес перетворення енергії подразника в енергію нервового сигналу (серія ПД). Причому параметри серії ПД (частота, тривалість, тощо) відображають параметри подразника (його силу, тривалість дії). Процес кодування інформації у рецепторах пов’язаний з процесом аналізу інформації у них і оснований на цьому аналізі. Аналіз інформації та кодування у рецепторах пов’язані з їх властивостями та здійснюються таким чином:

1. Про характер подразника – завдяки тому, що рецептори мають високу чутливість до адекватного подразника. Більшість рецепторів є полімодальними, тобто реагують на дію не лиши адекватного подразника, а й інших подразників. Проте чутливість їх до адекватного подразника висока, а до решти – ні. Тому при дії будь-якого подразника першими збуджуються ті рецептори, для яких цей подразник є адекватним, від них по неспецифічним провідним шляхам інформація надходить до відповідної зони кори – виникає відчуття.

2. Про силу подразника – аналіз та кодування відбувається завдяки таким особливостям рецепторів:

2.1. Рецептори однієї рефлексогенної зони мають різну збудливість (чутливість).При малій силі подразника реакцію збудження (серію ПД)генерують самі збудливі рецептори. При збільшенні сили подразника, кількість таких рецепторів збільшується – інформація про дію подразника передається більшою кількістю аферентних волокон.

2.2. Залежність амплітуди РП та частоти ПД аферентів від сили подразника.При збільшенні сили подразника зростає амплітуда РП (закон силових відносин)  більш сильний катодний струм діє на мембрану перехвату Ранв’є  виникає серія ПД з більшою частотою. Отже, використовується частотний принцип кодування інформації про силу подразника.

3. Про час дії подразника. Тривалість РП відповідає тривалості дії подразника, стільки ж триває аферентний сигнал. Тому зміна часу дії подразника призводить до зміни тривалості РП – змінюється тривалість АНС.

4. Рецептори здатні до адаптації. Вони адаптуються до подразників, якщо їх дія тривала. При цьому, хоча дія подразника триває, генеруюча структура (перехват Ранв’є) перестає генерувати серію ПД. Вважається, що основним механізмом адаптації є зменшення проникності мембрани перехвату для Na+.

В розвитку адаптації рецепторів важливе значення відіграють низхідні впливи ЦНС (центральна регуляція рівня активності рецепторів). Адаптація до тривалої дії подразника звільняє ЦНС від переробки непотрібної інформації. У рецепторах може відбувається адаптація до довготривалих подразників малої сили, які, проте, мають велике значення для організму – при цьому чутливість рецепторів до таких подразників різко зростає, наприклад підвищення чутливості зорових рецепторів в умовах темряви. В основі розвитку такої адаптації також лежать процеси, що відбуваються в самій мембрані (зміна стану каналів) рецептора.


 

А также другие работы, которые могут Вас заинтересовать

37840. Решение систем обыкновенных дифференциальных уравнений 300 KB
  В классе неявных методов абсолютно устойчивыми являются неявный одношаговый метод Эйлера неявный одношаговый метод трапеций неявный двухшаговый метод Гира и его реализация с переменным шагом – метод Шихмана. В данной лабораторной работе изучаются следующие три наиболее часто используемые на практике численные метода: явный метод Эйлера неявный метод Эйлера неявный метод Шихмана. Явный метод Эйлера Формула интегрирования явного метода Эйлера имеет вид: 3.
37841. РАСПРЕДЕЛЕНИЕ ТЕРМОЭЛЕКТРОНОВ ПО СКОРОСТЯМ КОНТАКТНАЯ РАЗНОСТЬ ПОТЕНЦИАЛОВ 186.94 KB
  РТ21 ЛАБОРАТОРНАЯ РАБОТА № 3 РАСПРЕДЕЛЕНИЕ ТЕРМОЭЛЕКТРОНОВ ПО СКОРОСТЯМ КОНТАКТНАЯ РАЗНОСТЬ ПОТЕНЦИАЛОВ ЦЕЛЬ РАБОТЫ: Определить величину и знак контактной разности потенциалов между катодом и анодом при указанных ниже токах накала. Измерить зависимость анодного тока от напряжения изменяя его от 03 до 03 B при напряжениях накала 63; 50; 40 B. Ток накала измеряется амперметром А1. По полученным данным построить график зависимости lnI от U и определить по ним величину и знак контактной разности потенциалов между катодом и...
37842. ИССЛЕДОВАНИЕ ПРОСТЕЙШИХ ФИЛЬТРОВ 132 KB
  Схема полосового фильтра Резонансная частота = 2457 кГц Для определения левой и правой резонансной частоты возьмем максимальную точку на графике и...
37843. ПРИБЛИЖЕНИЕ ФУНКЦИЙ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ 304 KB
  Метод среднеквадратического приближения функций заданных набором экспериментальных данных называется методом наименьших квадратов МНК. Рассмотрим применение метода наименьших квадратов для среднеквадратического приближения функции полиномом степени . Метод наименьших квадратов наиболее просто применить когда искомые параметры входят в аппроксимирующую зависимость линейно.
37844. Комп’ютерна електроніка та схемотехніка. Лабораторний практикум 1.78 MB
  Цель работы: Приобрести минимально необходимые навыки работы с пакетом EWD 4.0. Исследовать схемы пассивных RС – фильтров в частотной и временной области.
37845. ИССЛЕДОВАНИЕ ОСНОВНЫХ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК ЭЛЕКТРОМЕХАНИЧЕСКИХ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ 204 KB
  Определить основную погрешность комбинированного измерительного прибора тестера в следующих режимах работы: вольтметра постоянного тока вольтметра переменного тока миллиамперметра постоянного тока. Определить амплитудночастотную характеристику АЧХ вольтметра переменного тока. Построить график АЧХ определить рабочую полосу частот вольтметра. Для поверки вольтметра собрать поверочную схему рис.
37846. ЭЛЕКТРОННО-ЛУЧЕВОЙ ОСЦИЛЛОГРАФ 595 KB
  Оценить погрешности измерений используя результаты исследования осциллографа и его метрологические характеристики указанные в описании. Объекты измерений задаются преподавателем. ОБРАБОТКА РЕЗУЛЬТАТОВ ПРЯМЫХ И КОСВЕННЫХ ИЗМЕРЕНИЙ Цель работы – ознакомление с методами обработки результатов прямых и косвенных измерений при однократных и многократных измерениях. 2 при наличии относительно больших случайных погрешностей число измерений и уровень случайных погрешностей задаются преподавателем.
37848. Розробка алгоритмів задач з використанням складних структур 163 KB
  Преподаватель Егорова Кривой рог 1997 Контрольні запитання: Яка структура має назву списки Яким чином у мові С описується список Що таке стек Що таке черга Чим відрізняється черга від стека та списку Теоретичні відомості: Покажчики. Кількість елементів у послідовності називається довжиною списку. При роботі з списками часто доводиться виконувати такі операції: знайти елемент із заданною властивістю; визначити iй елемент у лінійному списку; внести додатковий елемент до або після вказанного вузла; вилучити певний елемент зі...