84549

Значення в’язкості крові для гемодинаміки. Особливості структури та функції різних відділів судинної системи

Доклад

Биология и генетика

Вязкість крові залежить від таких 2ох факторів. Від зміни лінійної швидкості руху крові. Вязкість крові складає 45 50 умовних одиниць а плазми 17 23 гривні.

Украинкский

2015-03-19

44 KB

0 чел.

Значення в’язкості крові для гемодинаміки. Особливості структури та функції різних відділів судинної системи.

В’язкість крові залежить від таких 2-ох факторів:

1. Від зміни лінійної швидкості руху крові. В’язкість крові складає 4,5 – 5,0 умовних одиниць ($), а плазми – 1,7 – 2,3 гривні. Тобто, в’язкість в значній мірі пов’язана з наявністю в ній форменних елементів (перш за все еритроцитів) і пояснюється міжеритроцитарними взаємодіями. При зменшенні лінійної швидкості руху крові ця взаємодія посилюється і тому підвищується в’язкість крові. Найменшою лінійна швидкість руху крові є в капілярах, однак ефективна в’язкість крові тут не більша, ніж в крупних судинах, тому що має місце вплив другого фактора.

2. Діаметр судин – при русі крові по судинах з діаметром менше 1мм, її в’язкість зменшується, особливо в капілярах – тут еритроцити "вишиковуються" в ланцюжок один за одним і їх розмежовує стовбчик плазми. Це зменшує взаємодію між еритроцитами та в’язкість крові (ефект Фареуса-Лінквіста).

Особливості структури та функції різних відділів судинної системи.

В фізіології кровообігу виділяють наступні групи судин з врахуванням особливостей структури та функції:

1. Судини компресійної камери (амортизуючі судини). Це крупні артеріальні судини та аорта, тобто судини еластичного типу. При вигнанні крові серцем вони розтягуються внаслідок своєї еластичності. Після закінчення вигнання вони зжимаються (при вигнанні частина енергії скорочення серця перетворюється на енергію напруження еластичних волокон; потім енергія напруження еластичних волокон переходить в енергію руху крові). Таким чином, зжимання цих судин забезпечує рух крові в периферичні структури після закінчення вигнання. Тобто, вони забезпечують безперервний кровотік, не дивлячись на порційне викидання крові серцем в судини. Окрім того, ці судини зменшують ступінь підвищення тиску крові в артеріях при її вигнанні.

2. Судини опору (артеріоли, артерії м’язевого типу). Друга назва – резистивні судини. Вони забезпечують на 50 – 60 % створення ЗПО. При зміні їх стану (тонусу) змінюється ЗПО (і артеріальний тиск). Звуження артеріол в одних регіонах і розширення в інших забезпечує перерозподіл крові між регіонами.

3. Обмінні судини (капіляри). Їх будова (шар ендотеліоцитів на базальній мембрані) та особливості руху в них крові (низька лінійна швидкість; рух еритроцитів "ланцюжком"), забезпечують найкращі умови для обміну речовин між кров’ю та еритроцитами.

4. Судини ємності (депонуючі) – дуже розтяжні, здатні значно збільшувати свою ємність при збільшенні трансмурального тиску (різниця тисків які діють зсередини судини та зовні від неї). Завдяки своїй розтяжності вони депонують кров (в стані спокою – до 60 – 70% від ОЦК). До цих судин відносяться дрібні та середні вени в складі стінок яких є гладком’язеві клітини. Тому вони можуть скорочуватись під впливом регуляторних механізмів  зменшення ємності  перехід крові із депонованого стану в стан активної циркуляції.


 

А также другие работы, которые могут Вас заинтересовать

41270. МІСТА НА ДУНАЇ ТА ЙОГО ПРАВИХ ПРИТОКАХ 45.34 MB
  Майже всі придунайські міста розвинулися з прикордонних римських таборів I—IV ст., зберігши сліди античного регулярного планування в своїх історичних ядрах. Для тих міст притаманним є складний етнічний склад міського населення
41271. Методологическая основа моделирования 127 KB
  На этапах разработки АСОИУ различных уровней отраслевые АСУ АСУ объединениями и предприятиями автоматизированные системы научных исследований и комплексных испытаний системы автоматизации проектирования АСУ технологическими процессами а также интегрированные АСУ необходимо учитывать следующие особенности: сложность структуры стохастичность связей между элементами неоднозначность алгоритмов поведения при различных условиях большое количество параметров и переменных неполноту и недетерминированность исходной информации...
41272. Общая характеристика проблемы моделирования систем 134 KB
  Общая характеристика проблемы моделирования систем. Цели и проблемы моделирования систем. Классификация видов моделирования систем. Общая характеристика проблемы моделирования систем Характеристики моделей систем При моделировании рассматривают следующие характеристики моделей: 1.
41273. Возможности и эффективность моделирования систем на вычислительных машинах 123 KB
  Классификация видов моделирования систем продолжение. Возможности и эффективность моделирования систем на вычислительных машинах. Средства моделирования систем. Обеспечение имитационного моделирования.
41274. Математические схемы моделирования систем 238.5 KB
  При построении математической модели системы необходимо решить вопрос об ее полноте. Также должна быть решена задача упрощения модели которая помогает выделить в зависимости от цели моделирования основные свойства системы отбросив второстепенные. При переходе от содержательного к формальному описанию процесса функционирования системы с учетом воздействия внешней среды применяют математическую схему как звено в цепочке описательная модель математическая схема математическая аналитическая или и имитационная модель. Формальная...
41275. Непрерывно-детерминированные модели (D-схемы). Основные соотношения. Возможные приложения D-схемы 224 KB
  Они отражают динамику изучаемой системы и в качестве независимой переменной от которой зависят неизвестные искомые функции обычно служит время t. Элементарные системы Из этого уравнения свободного колебания маятника можно найти оценки интересующих характеристик. Очевидно что введя обозначения h2 = mMlM2 = LK h1 = 0 h0 = mMglM = 1 CK Ft = qt = zt получим обыкновенное дифференциальное уравнение второго порядка описывающее поведение этой замкнутой системы: h2d2zt dt2 h1dzt dt h0zt = 0 2.9 где h0 h1...
41276. Дискретно-детерминированные модели (F-схемы). Основные соотношения. Возможные приложения F-схемы 170.5 KB
  Система представляется в виде автомата как некоторого устройства с входными и выходными сигналами перерабатывающего дискретную информацию и меняющего свои внутренние состояния лишь в допустимые моменты времени. В каждый момент t = 0 1 2 дискретного времени Fавтомат находится в определенном состоянии zt из множества Z состояний автомата причем в начальный момент времени t = 0 он всегда находится в начальном состоянии z0 = z0. Другими словами если на вход конечного автомата установленного в начальное состояние z0 подавать в...