84599

Механізми проведення збудження через нервово-м’язовий синапс. Медіатор, мембранні циторецептори та блокатори нервово-м’язових синапсів

Доклад

Биология и генетика

Нервовомязовий синапс утворений нервовим закінченням аксона мотонейронів та кінцевою пластинкою частина мембрани мязового волокна яка контактує з нервовим закінченням. Механізм передачі збудження через нервовомязовий синапс полягає в тому що ПД іде по мембрані нервового волокна поширюється по пресинаптичній мембрані при цьому відкриваються кальцієві канали пресинаптичної мембрани вхід іонів Са всередину нервового закінчення взаємодія з везикулами міхурці в яких є медіатор ацетилхолін рух везикул до пресинаптичної мембрани...

Украинкский

2015-03-19

45.06 KB

5 чел.

Механізми проведення збудження через нервово-м’язовий синапс. Медіатор, мембранні циторецептори та блокатори нервово-м’язових синапсів.

Нервово-м’язовий синапс утворений нервовим закінченням аксона -мотонейронів та кінцевою пластинкою – частина мембрани м’язового волокна, яка контактує з нервовим закінченням. Розділяє пресинаптичну мембрану нервового волкна та кінцеву пластинку синаптична щілина.

Механізм передачі збудження через нервово-м’язовий синапс полягає в тому, що ПД іде по мембрані нервового волокна  поширюється по пресинаптичній мембрані, при цьому відкриваються кальцієві канали пресинаптичної мембрани  вхід іонів Са+ всередину нервового закінчення  взаємодія з везикулами (міхурці, в яких є медіатор ацетилхолін)  рух везикул до пресинаптичної мембрани  злиття везикул з пресинаптичною мембраною  вихід медіатора ацетилхоліну в синаптичну щілину  дифузія ацетилхоліну до мембрани кінцевої пластинки  взаємодія з мембранними циторецепторами (Н-холінорецептори)  відкриття хемочутливих натрієвих каналів  вхід іонів Na+ в м’язове волокно через кінцеву пластинку  розвиток деполяризації кінцевої пластинки, що має назву потенціалу кінцевої пластинки (ПКП). ПКП – один із видів місцевого збудження.

Як будь-яке з місцевих збуджень ПКП поширюється на сусідні ділянки постсинаптичної мембрани за допомогою місцевих струмів. Ці струми в незбуджених ділянках мембрани мають вихідний напрям, тобто викликають деполяризацію.

Cила цих струмів чисельно відповідає амплітуді ПКП, а вона складає 45-50 мВ. Поріг деполяризації постсинаптичної мембрани м’язового волокна складає 40 мВ (величина ПС = –90 мВ, величина Екр = –50 мВ. Отже, сила цих струмів надпорогова.

Час дії цих струмів дорівнює тривалості ПКП і також є надпороговим.

Швидкість збільшення сили відповідає швидкості розвитку ПКП й також

є надпороговою.

Отже, місцеві струми в незбуждених ділянках постсинаптичної мембрани викликають деполяризацію до Екр  розвиток ПД, які будуть поширюватися від місця свого виникнення вздовж усієї довжини мембрани м’язового волокна (і через електромеханічне спряження будуть викликати скорочення м’яза).

Закономірності проведення збудження через нервово-м’язовий синапс:

1. Однобічне проведення.

2. Уповільнене проведення (час від виникнення ПД на пресинаптичній мембрані до виникнення ПД на постсинаптичній мембрані складає близько 0,5 мсек.

3. Проведення збудження через синапс супроводжується швидким розвитком втоми (у зв’язку з виснаженням запасів медіатора в нервовому закінченні);

Ці особливості (1-3) характерні для будь-якого хімічного синапса і пов’язані з хімічним характером передачі інформації через синапс.

4. Збудження передається через нервово-м’язовий синапс без трансформації ритму: 1 ПД на пресипаптичній мембрані викликає 1 ПКП на мембрані кінцевої пластинки, а це викликає 1 ПД на мембрані м’язового волокна.

Блокаторами нервово-м’язової передачі є курареподібні речовини, паприклад, диплацин, що утворюють стійкі з’єднання з Н-холінорецепторами та не дають змоги ацетилхоліну взаємодіяти з ними. Медіатор ацетилхолін взаємодіє з рецепторами протягом короткого – часу, після чого комплекс медіатор-циторецептор розпадається і медіатор руйнується ферментом ацетилхолінестеразою, активність якого в синапсі дуже висока.


 

А также другие работы, которые могут Вас заинтересовать

19335. УСКОРЕНИЕ ЦЕЛОЧИСЛЕННОГО ДЕЛЕНИЯ. АУ ДЛЯ ЧИСЕЛ С ПЛАВАЮЩЕЙ ЗАПЯТОЙ 82.5 KB
  АК ЛЕКЦИЯ № 12 УСКОРЕНИЕ ЦЕЛОЧИСЛЕННОГО ДЕЛЕНИЯ. АУ ДЛЯ ЧИСЕЛ С ПЛАВАЮЩЕЙ ЗАПЯТОЙ Ускорение целочисленного деления Следует отметить что операция деления предоставляет не слишком много путей для своей оптимизации по времени. Тем не менее определенные возможности ...
19336. УПРАВЛЯЮЩИЕ УСТРОЙСТВА С ПРОГРАММИРУЕМОЙ ЛОГИКОЙ 181 KB
  АК ЛЕКЦИЯ № 13 УПРАВЛЯЮЩИЕ УСТРОЙСТВА С ПРОГРАММИРУЕМОЙ ЛОГИКОЙ Функции центрального устройства управления Устройство управления УУ вычислительной машины реализует функции управления ходом вычислительного процесса обеспечивая автоматическое выполнение ком
19337. АДРЕСАЦИЯ МК. СТРУКТУРА УПРАВЛЯЮЩЕЙ ПАМЯТИ 177.5 KB
  АК ЛЕКЦИЯ № 14 АДРЕСАЦИЯ МК. СТРУКТУРА УПРАВЛЯЮЩЕЙ ПАМЯТИ Адресация микрокоманд При выполнении микропрограммы адрес очередной микрокоманды относится к одной из трех категорий: определяется кодом операции команды; является следующим по порядку адресом;
19338. ОРГАНИЗАЦИЯ ВНУТРИМАШИННОГО ОБМЕНА ИНФОРМАЦИЕЙ. ОБЩИЕ ВОПРОСЫ 177.5 KB
  АК ЛЕКЦИЯ № 15 ОРГАНИЗАЦИЯ ВНУТРИМАШИННОГО ОБМЕНА ИНФОРМАЦИЕЙ. ОБЩИЕ ВОПРОСЫ. Совокупность трактов объединяющих между собой основные устройства ВМ центральный процессор память и модули ввода/вывода образует структуру взаимосвязей вычислительной машины. Структур...
19339. АРБИТРАЖ ШИН 163.5 KB
  АК ЛЕКЦИЯ № 16 АРБИТРАЖ ШИН В реальных системах на роль ведущего вправе одновременно претендовать сразу несколько из подключенных к шине устройств однако управлять шиной в каждый момент времени может только одно из них. Чтобы исключить конфликты шина должна предус...
19340. СИСТЕМА ВВОДА-ВЫВОДА 222.5 KB
  АК ЛЕКЦИЯ № 17 СИСТЕМА ВВОДАВЫВОДА Помимо центрального процессора ЦП и памяти третьим ключевым элементом архитектуры ВМ является система ввода/вывода СВВ. Система ввода/вывода призвана обеспечить обмен информацией между ядром ВМ и разнообразными внешними устройс...
19341. МОДУЛЬНАЯ ОРГАНИЗАЦИЯ ВНУТРЕННЕЙ ПАМЯТИ 140.5 KB
  АК ЛЕКЦИЯ № 18 МОДУЛЬНАЯ ОРГАНИЗАЦИЯ ВНУТРЕННЕЙ ПАМЯТИ Блочная организация основной памяти Емкость основной памяти современных ВМ слишком велика чтобы ее можно было реализовать на базе единственной интегральной микросхемы ИМС. Необходимость объединения нес...
19342. КЭШ-ПАМЯТЬ 159 KB
  АК ЛЕКЦИЯ № 19 КЭШПАМЯТЬ Кэшпамять Как уже отмечалось в качестве элементной базы основной памяти в большинстве ВМ служат микросхемы динамических ОЗУ на порядок уступающие по быстродействию центральному процессору. В результате процессор вынужден простаивать не
19343. АРХИТЕКТУРЫ С ПОЛНЫМ И СОКРАЩЁННЫМ НАБОРОМ КОМАНД 158.5 KB
  АК ЛЕКЦИЯ № 20 АРХИТЕКТУРЫ С ПОЛНЫМ И СОКРАЩЁННЫМ НАБОРОМ КОМАНД Современная технология программирования ориентирована на языки высокого уровня ЯВУ главная задача которых облегчить процесс написания программ. Более 90 всего процесса программирования осуществл...