84622

ЛИНЕЙНЫЙ ОДНОКАСКАДНЫЙ УСИЛИТЕЛЬ СИГНАЛА ЗВУКОВОЙ ЧАСТОТЫ

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Рассчитать элементы схемы однокаскадного усилителя, удовлетворяющего указанным техническим требованиям: Усилительный каскад выполнить по заданной схеме с общим эмиттером; Рекомендуемый тип транзистора КТ363А; Амплитуда неискаженного выходного сигнала не менее 2,5 В...

Русский

2015-03-20

433 KB

3 чел.

PAGE  3

МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ

(ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

Институт автоматики и вычислительной техники

Кафедра электрофизики

Курсовая работа

ЛИНЕЙНЫЙ ОДНОКАСКАДНЫЙ УСИЛИТЕЛЬ

СИГНАЛА ЗВУКОВОЙ ЧАСТОТЫ

Выполнил

Студент

Чирва Елена Владимировна

Группа

А-08-08

Дата

25 мая 2011 г.

 

Принял

Преподаватель

Батянина Алла Павловна

Оценка

Дата

Москва, 2010 г.

Содержание

1. Расчетное задание и исходные данные

3

2. Расчёт элементов усилительного каскада

3

2.1. Схема усилительного каскада

3

2.2. Вольтамперные характеристики транзистора

4

2.3. Справочные данные на транзистор

5

2.4. Расчёт резисторов

5

2.5. Расчёт конденсаторов

8

3. Моделирование усилительного каскада на ЭВМ

9

3.1. Схема моделирования

9

3.2. Статический анализ схемы

9

3.3. Частотные характеристики усилителя

10

3.4. Амплитудная характеристика усилителя

11

3.5. Выводы

12


1. Задание на проектирование и исходные данные

Рассчитать элементы схемы однокаскадного усилителя, удовлетворяющего указанным техническим требованиям:

1. Усилительный каскад выполнить по заданной схеме с общим эмиттером;

2. Рекомендуемый тип транзистора КТ363А;

3. Амплитуда неискаженного выходного сигнала не менее 2,5 В;

4. Коэффициент усиления напряжения  при заданном сопротивлении нагрузки  Ом и внутреннем сопротивлении источника сигнала  Ом;

5. Усилитель при заданной емкости нагрузки  нФ должен обеспечить полосу пропускания  Гц …  кГц;

6. Температурный диапазон работы усилителя: -40ºС…+60ºС.

2. Обоснование и расчёт элементов усилительного каскада

2.1. Принципиальная схема усилительного каскада

  

Рис. 1 Принципиальная схема усилительного каскада

2.2. Вольтамперные характеристики транзистора

Рис. 2 Входная вольтамперная характеристика (ВАХ) транзистора КТ3107А

Рис. 3 Выходная ВАХ транзистора КТ3107А

2.3. Справочные данные на транзистор КТ3107А

- Статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером .

- Предельная частота коэффициента передачи тока МГц.

- Предельно допустимый ток коллектора  мА.

- Максимально допустимое постоянное напряжение эмиттер-база  В.

- Максимально допустимое постоянное напряжение коллектор-база  В.

- Максимально допустимое постоянное напряжение коллектор-эмиттер  В.

- Максимально допустимая постоянная рассеиваемая мощность коллектора  мВт.

- Емкость коллекторного перехода  пФ.
- Емкость эмиттерного перехода  пФ.

2.4. Расчёт резисторов

Выбор рабочей точки транзистора.

По выходной ВАХ транзистора определим границу режима насыщения  В.

Запас для ухода рабочей точки из-за термонестабильности  В.

Амплитуда неискаженного выходного сигнала  В.

Тогда напряжение коллектор-эмиттер в рабочей точке  В.

Источник питания – источник ЭДС с напряжением  В.

Выберем точку, соответствующую току коллектора в рабочей точке, например,  мА, тогда на линейном участке входной ВАХ получим точку, соответствующую напряжению база-эмиттер  мВ и току базы  мА.

Зная ток коллектора рабочей точки, определим сопротивление  кОм равное сопротивлению выходной части каскада по постоянному току.

Отсюда определим сопротивление выходной части каскада по переменному току

Ом.

Найдём отклонения значений токов и напряжений из-за термонестабильности и разброса значений коэффициента β:

В

мА

А,

где Δβ = 35 (полуразность), сопротивление базы  кОм,

- коэффициент термонестабильности,

.

Проверим выбранное значение сопротивления базы:

кОм.

Рассчитаем значения сопротивлений R1 и R2, удовлетворяющие условиям:

,  , где  В.

Получим R1 = 2 кОм и R2 = 7.5 кОм.

Проверим, обеспечивают ли полученные значения сопротивлений необходимый рабочий режим транзистора:

мА;

мА;

В.

По входной и выходной ВАХ определим малосигнальные Н - параметры:

(при );

(при );

(при );

(при ).

Найдём коэффициент усиления напряжения, крутизну транзистора, входное и выходное сопротивления:

> 0.65, где

;

Ом;

кОм;

Ом;

.

Рис. 4 Нагрузочные прямые по переменному и постоянному токам

2.5. Расчёт конденсаторов

Рассчитаем разделительные конденсаторы Ср1 и Ср2, которые снижают коэффициент усиления каскада.

мкс;

.

Полагая, что :

мс.

Тогда из формул:

,

находим Ср1 = 0.75 мкФ, Ср2 = 2.4 мкФ.

Проверим, превысит ли полученное значение верхней границы частоты требуемое по условию:  кГц. Для этого должно выполниться условие  (1).

с;

;

с;

с, где .

с – условие (1) выполнилось.

Верхняя граница полосы пропускания:

МГц.

3. Моделирование усилительного каскада на ЭВМ

При помощи программы Micro-Cap 8.1.1.1 будем моделировать усилительный каскад на ЭВМ.

3.1. Схема моделирования

Рис.5 Схема моделирования

3.2. Статический анализ схемы

Рис.6 Анализ схемы по постоянному току

3.3. Частотные характеристики усилителя

Рис.7 Анализ нижней границы полосы пропускания

Рис.8 Анализ верхней границы полосы пропускания

Рис.9 Амплитудно-частотная (АЧХ) и фазочастотная (ФЧХ) характеристики

3.4. Амплитудная характеристика усилителя

Рис.10 Амплитудная характеристика

Рис.11 Качественное сравнение входного и выходного сигналов

3.5. Выводы

На рис. 6 видно, что токи и напряжения приближённо соответствуют рассчитанным, транзистор работает в линейном режиме (указатель LIN). Рис. 7 и 8 иллюстрируют полосу пропускания усилителя, верхняя и нижняя границы удовлетворяют условию задания. Коэффициент усиления превышает требуемый. На амплитудной характеристике

(рис. 10) показано, что минимальная амплитуда неискаженного выходного сигнала больше 2,5 В на заданном температурном диапазоне. Рис. 11 показывает, что усилительный каскад ОК не инвертирует сигнал. Чтобы проанализировать полученные результаты расчёта и моделирования каскада на ЭВМ, составим сравнительную таблицу:

Задание

Расчёт

ЭВМ

Коэффициент

усиления по

напряжению

0.65

0.73

0.996

Минимальная

амплитуда

неискаженного

сигнала, В

2.5

2.5

3.5

Нижняя граница

полосы пропускания, Гц

200

200

190

Верхняя граница

полосы пропускания, Гц

35к

1.4М

22М

Видно, что результаты теоретического расчёта и практического моделирования  на ЭВМ удовлетворяют условиям технического задания.


 

А также другие работы, которые могут Вас заинтересовать

49955. АБСОРБЦИОННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ЭНЕРГИИ БЕТА-СПЕКТРА РАДИОНУКЛИДА 254.5 KB
  Соловьев АБСОРБЦИОННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ЭНЕРГИИ БЕТАСПЕКТРА РАДИОНУКЛИДА Практическое руководство Томск 2012 Утверждено ОМС 5 мая 1999г. Определение максимальной энергии бетаспектра радионуклида: Руководство к лабораторной работе. В руководстве рассмотрены методы идентификации радионуклидов с помощью определения максимальной энергии излучения.
49957. Методика навчання стройових вправ 95 KB
  Наприклад термiн Руки вперед припускає що руки повиннi бути прямими долонi всередину пальцi разом. Якщо треба назвати положення яке вiдрiзняється вiд традицiйного слiд його уточнити: Руки вперед долонi вниз пальцi нарiзно. Наприклад: €Шаг правою руки до плечей поворот голови направо€. Наприклад: €œДугами вперед руки в сторониâ.
49958. Вывод в консоль с использованием C# (Csharp) 104.5 KB
  Мы используем WriteLine где нам нужно для того чтобы вывести текст в окно консоли. У WriteLine есть родственница Write: Console.А теперь выведем текст на в новой строке Как видно разница между WriteLine и Write довольно очевидна. Когда вызываешь WriteLine текст автоматически выведется с новой строки.
49959. Создание простейшего триггера на языке PLSQL 238.5 KB
  Задание для самостоятельной работы на лабораторную работу: Сделать всё по методичке, но по своей таблице, выполненной в первой лабораторной работе
49960. Общая физика. Лабораторный практикум 2.47 MB
  На каждое лабораторное занятие студенты должны приносить с собой: а лабораторный журнал тетрадь в клетку не менее 48 листов. Все черновые записи делаются на левой стороне листа лабораторного журнала; е окончательный результат представляют в стандартном виде суказанием среднего значения измеряемой величины абсолютнойотносительной погрешности вычисленных по методу Стьюдента инадежности измерений. Например результат измерений плотности твердого тела в стандартном виде = 65 03 103 кг м3 ε = 5 при α = 095 где ...
49961. Электричество и магнетизм. Лабораторный практикум 7.26 MB
  Позднее он высказал предположение что все магнитные явления обусловлены токами причем магнитные свойства постоянных магнитов связаны с токами постоянно циркулирующими внутри этих магнитов. Cогласно закону Био Савара-Лапласа где I сила тока в проводнике d l – вектор имеющий длину элементарного отрезка проводника и направленный по направлению тока r – радиус вектор соединяющий элемент с рассматриваемой точкой P. Напряженность магнитного поля подчиняется принципу суперпозиции а согласно закону Био Савара-Лапласа 6...
49962. ПОСТОЯННОМ ДАВЛЕНИИ И ОБЪЕМЕ 291.5 KB
  Изучение процессов в идеальных газах определение отношения теплоемкостей Оборудование.3 Увеличение внутренней энергии идеального газа в случае изменения его температуры на здесь i число степеней свободы молекулы под которым подразумевается число независимых координат определяющих положение молекулы в пространстве: i =3 для одноатомной; i =5 для двухатомной; i =6 для трех и многоатомной; R универсальная газовая постоянная ; R= 831 Дж мольК. При расширении газа система выполняет работу 5.4 молярная...
49963. МЕДИЦИНСКОЕ ОБЕСПЕЧЕНИЕ НАСЕЛЕНИЯ ПРИ ПРОВЕДЕНИИ МЕРОПРИЯТИЙ ГРАЖДАНСКОЙ ОБОРОНЫ 85 KB
  Качественной особенностью современных форм ведения войны является выход из строя на территории очага массового поражения основного числа медицинских учреждений, органов управления, разрушение стройной системы оказания помощи населению.