84650

Сплошные тела. Абсолютно упругое тело. Виды деформаций

Лекция

Физика

Известно что все тела состоят из молекул и атомов между которыми существуют силы взаимодействия поэтому и формируемое тело можно рассматривать как систему материальных точек расстояния между которыми изменяются при их деформации.

Русский

2015-03-20

1010 KB

8 чел.

Лекция №4. Механика упругих тел.

I. Сплошные тела. Абсолютно упругое тело. Виды деформаций.

До сих пор рассматривалась механика недеформируемого твердого тела. Что такое деформация?

Деформация – процесс силового воздействия, в результате которого изменяется форма тел под действием приложенных к ним внешних сил.  

Известно, что все тела состоят из молекул и атомов, между которыми существуют силы взаимодействия, поэтому и формируемое тело можно рассматривать как систему материальных точек, расстояния между которыми изменяются при их деформации.

Но во многих случаях более целесообразно рассматривать деформируемое тело, как сплошное. Так обычно поступают при всех инженерных расчетах (например: прогиб балки, кручение осей и др.) Поэтому в дальнейшем все виды деформаций мы будем рассматривать с макроскопической точки зрения, а тела представлять как сплошные.

Твердые тела сопротивляются как изменению объема, так и формы, т.е. любому деформированию. Действие силы оказывает на тело давление.

Давления, возникающие в твердом теле при его деформировании, называются упругими напряжениями.

Сила упругих напряжений в твердом теле может иметь любое направление по отношению к площадке, на которую она давит.

Все деформации делятся на виды:

а)

Деформации

Однородная

Неоднородная

Деформация, при которой все точки тела, лежащие на одной вертикали, не смещаются с нее, а расстояния между слоями остаются во всех точках одинаковыми (растяжение, сжатие)

(изгиб, кручение)

б)

Деформации

Упругая

Неупругая (пластичная)

Когда после снятия нагрузки форма тела восстанавливается (деформация исчезает)

Тела, в которых после прекращения действия внешней силы деформация полностью исчезает и восстанавливается первоначальная форма тела, называются абсолютно упругими телами.

Тела, не восстанавливающие свою первоначальную форму после снятия действия сил, называются неупругими (пластичными).

В природе нет абсолютно упругих и абсолютно неупругих тел. При изменении условий (температуры, нагрузки) упругое тело может перейти в состояние пластичное и наоборот.

Пример:

Резина:

Пластичная при нормальных температурах

Упругая при низких температурах

Построение теории процессов деформации – задача молекулярной и атомной физики.

Примерное объяснение деформации может быть дано следующее: между атомами и молекулами внутри твердого тела существуют силы притяжения и отталкивания, обеспечивающие их взаимодействие друг с другом и удерживающие их друг около друга.  Внешние силы смещают атомы со своих мест. Если сдвиг внешней силы невелик, то после прекращения внешнего действия частицы вернутся к прежнему взаимному положению, это упругая деформация. Если атомы меняют соседей и взаимодействуют с другими элементами решетки (структуры) после прекращения воздействия, то это пластичная деформация.  

II. Типы деформаций. Основные характеристики деформаций.

Под действием внешних сил твердые тела изменяют свою форму: удлиняются, изгибаются и т.д.

а) растяжение (сжатие)

Силы . Действие этих сил равномерно распределено по всему сечению.

Длина стержня ℓ получит положительное (при растяжении), либо отрицательное (при сжатии) приращение ℓ, т.е. в общем случае длина определяется формулой:  

L = ℓ ±

Величина, численно равная отношению приращения размера тела, к начальному размеру, называется относительной деформацией.

Относительная деформация сжатия (-) и растяжения (+)  ,   (1)

где ε – величина безразмерная.

Из закона сохранения массы следует, что при растяжении или сжатии должна меняться не только длина тела, но и его поперечный размер. Изменение поперечных размеров тела при его растяжении или сжатии характеризуется относительным поперечным растяжением или сжатием.

Отношения относительной поперечной деформации εα к его относительной продольной деформации ε называется коэффициентом Пуассона

       (2)

μ – величина табличная. Для металлов μ ~ 0,25, для материалов типа резины μ ~ 0,5.

μ < 0,5 – всегда.

б) сдвиг

Деформация сдвига может быть представлена в виде деформаций растяжения вдоль диагонали АВ и сжатия вдоль диагонали СД.

При деформации сдвига любая прямая, первоначально перпендикулярная к горизонтальным слоям, повернется на угол φ. Тогда:

, если φ мал, то φ ≈ γ

γ – относительный сдвиг.



в) кручение

Верхнее сечение закреплено, к нижнему приложена пара сил и нижнее основание поворачивается по отношению к верхнему на угол φ.

Отношение угла закручивания φ к длине стержня L называется относительной деформацией кручения.

          (3)

г) изгиб

Самостоятельно, при выполнении лабораторной работы.

III. Напряжение. Связь между деформацией и напряжением. Закон Гука.

Пусть к телу приложена внешняя сила. При этом нарушается равновесие внутренних сил. В каждом сечении появляются отличные от нуля результирующие внутренние силы, направленные против внешних сил. При установившейся деформации величина внутренних упругих сил может быть измерена величиной внешних сил, приложенных к телу, т.е.

Внешняя сила, действующая на единицу площади поверхности тела, называется  усилием (Р).

Упругая сила (внутренние силы), действующая на единицу площади сечения, проведенного внутри тела, называется напряжением σ:

       (4)

Английский физик Р. Гук в 1675г. экспериментально установил связь между ε и σ:

   ,        (5)

где k – коэффициент упругости.

Закон Гука

Напряжения, возникающие в деформированном теле, прямо пропорциональны относительной деформации.

модуль упругости (модуль Юнга).

Е – зависит только от материала и постоянен для данного вещества.

Физический смысл Е: модуль Юнга численно равен нагрузке, при которой длина образца с поперечным сечением, равным единицы, возрастает вдвое (такие нагрузки выдерживает только каучук).

Закон Гука справедлив только при упругих деформациях.

– закон Гука для деформации растяжения.

IV. Диаграмма напряжений. Упругий гистерезис.

Рассмотрим связь между деформацией и напряжением на графике, называемой диаграммой напряжений. (В качестве примера берётся металлический образец – стержень)

При увеличении σ (сила действующая увеличивается от F = 0) относительная деформация ε увеличивается.

Разбиваем кривую на участки.

(0-1) – линейная зависимость. Справедлив закон Гука.

точка 1 называется пределом пропорциональности.

(1-2) – упругие свойства сохраняются.

точка 2 называется предел упругости.

(2-3) – область пластических деформаций (остаточные деформации).

точка 3 называется предел текучести.

(3-3) – горизонтальная область – материал “течет”.

Уменьшение сечения приводит к увеличению σ (3-4)

точка 4 называется пределом прочности.

(4-5) – разрушение тела.

Если область пластичности:

а) большая – вязкие тела (глина)

б) маленькая – хрупкие тела (стекло)

Характер деформации в теле зависит кроме того от длительности действия внешней силы.

АВ – начало нагрузки

ВС – окончание нагрузки

СД – начало снятия нагрузки

ДЕ – спад нагрузки (может быть несколько суток).

Построим график зависимости σ от ε при переменных деформациях растяжения и сжатия.

На участке (0-2) упругая деформация согласно диаграмме напряжений. В реальном теле после снятия нагрузки деформация полностью не  исчезает (ОА = ε0).

Снять ее можно, приложив обратное действие – сжатие. В т. В – ε = 0, при этом напряжение (-σ) – называется упругим гистерезисом и т.д. до точки 2.

Графическая зависимость σ от ε при периодически повторяющихся деформациях, изображенная замкнутой кривой называется петля упругого гистерезиса.

На участке DN2 – внешние силы совершают работу над телом. Работа равна площади SDN22`D.

На участке А2А – работу совершают внутренние силы. Работа равна площади SА22`А.

SDN22`D SA22`A = Sверхней петли   

Аналогично для нижней части петли. Таким образом, площадь петли гистерезиса пропорциональна той части механической энергии, которая за каждый цикл изменения напряжения в образце переходит во внутреннюю энергию тела.

Чем больше петля, тем сильнее нагревается тело, поэтому ответственные детали машин, подверженные периодическим нагрузкам, делают из специальных сортов стали, для которых петля гистерезиса мала.

V. Энергия упругой деформации.

Внешняя сила, перемещая части деформированного тела, совершает работу против внутренних сил. При исчезновении деформации внутренние силы совершают работу против внешних сил. Если тело абсолютно упругое, то

Авнешних сил = Авнутренних сил

Вычислим потенциальную энергию упруго-деформированного тела, т.е. надо вычислить работу внешних сил.

При упругой деформации экспериментальный закон Гука:

F = kx или Fупр = –kx

Элементарная работа равна dA = Fdx, тогда dA = kxdx, полагая, что смещение от 0 до x0, получим

Эта работа определяет запас потенциальной энергии упруго деформированного тела, т.е.

,       (6)

таким образом работа А определяется площадью треугольника

A = S032

VI. Силы трения. Коэффициент трения.

Скольжение  твердого тела по поверхности другого всегда сопровождается превращением его Ек в тепло,  в результате чего движение замедляется. С чисто механической точки зрения это явление описывается введением некоторой силы, препятствующей движению – силой трения. На трение тратится энергия, которая переходит в немеханические формы (тепловая, электризация).

Трение

Внешнее (сухое)

Внутреннее (вязкое)

возникает при движении тел в вязкой среде или при относительном перемещении слоёв, прилегающих к поверхностям.

Особенности:

а) возникает только при движении;

б) η << kк< kск

в) происходит превращение механической энергии в другие виды;

г) сила вязкого трения зависит от

  1.  вязких свойств среды,
  2.  скорости движения,
  3.  формы и размеров тела.

Трение скольжения

Трение качения

сила трения покоя

(статическая сила)

Fпокоя > Fск

Кп > Кск

Кск зависит от:

а) рода поверхностей

б) скорости движения

за счёт деформации в местах соприкосновения

Fкач < Fск

r

0

F

3

1

0

х0

х


 

А также другие работы, которые могут Вас заинтересовать

65851. Строение микро-ЭВМ (архитектура) 179.5 KB
  ОБ операционный блок производит прием и временное хранение исходных данных их преобразование и передачу результата обработки следующим устройствам. Кроме того ОБ проверяет соответствия результата обработки данных заранее обусловленным признакам например отрицательные числа нули четность и т.
65853. Вибір архітектури обчислювальної мережі. Загальна схема взаємодії локальних, міських та глобальних мереж. Вибір локальної обчислювальної мережі 373.5 KB
  Мета: Вивчити cхему взаємозвязку різних типів мереж: локальних міських та глобальних. На основі поставлених задач вміти обирати архітектуру обчислювальної мережі. Вибір локальної обчислювальної мережі Загальна схема взаємодії локальних міських і глобальних обчислювальних...
65854. Эволюция маркетинговых концепций. Современные тенденции маркетинга (международного маркетинга) 61.46 KB
  Современные тенденции маркетинга международного маркетинга Концепция маркетинга генеральный замысел действий фирмы или предприятия на рынке определяющий её стратегию действий выбор системы целей и идеи бизнеса. Если исходить из классификации теории управления маркетингом предложенной профессором маркетинга...
65855. Французская печать XIX века 30.5 KB
  Этапы: Печать эпохи Наполеона I Пресса эпохи реставрации Журналистика июльской монархии Французская печать второй половины 19 века. Перу Наполеона принадлежит 32 тома. Концепция печати Наполеона. У Наполеона было много законов связанных с прессой.
65856. Эпос народов средневековой Европы 46 KB
  Мир эпических текстов как правило полярный его условно можно обозначить как мир своих и чужих как мир добра и зла мир человеческий хтонический демонический несмотря на то что эти миры имеют противоположную компонацию структура этих двух миров зачастую очень схожа.
65857. Феодальная раздробленность в русских землях. Характеристика отдельных княжеств 39 KB
  В середине 12 века князь Юрий Долгорукий несколько раз пытался взять город. Юрий силой захватил Коломну окончательно присоединил Переславль и начал войну с Тверью. В Орде Юрий обвинил Михаила в том что тот не платит дань и в отравлении ханской сестры.
65858. Своеобразие славяно-русского язычества 43.5 KB
  Функции Богов часто переплетались между собой дублировали друг друга. Сначала душу хранит Бог а после жизни очистившись от грехов душа вновь возвращается к нему. Берегиня это богиня породившая всё сущное. Хорс символизировал бога.
65859. Понятие культуры в современной науке 36.5 KB
  Под феноменом культуры понимается все то что создано человеком в результате его приспособления к окружающему природному миру поэтому культура это всё то что человек добавляет к полученному от природы и то новое что он создает иногда вопреки законам природы...