84758

ГЛОБАЛЬНЫЕ СЕТИ

Лекция

Информатика, кибернетика и программирование

Совокупность различных сетей подсетей ЛВС расположенных на значительных расстояниях друг от друга и объединенных в единую сеть с помощью телекоммуникационных средств представляет собой территориально-распределенную сеть которую можно рассматривать как совокупность различных сред передачи...

Русский

2015-03-21

687.52 KB

15 чел.

Лекция 12

4. ГЛОБАЛЬНЫЕ СЕТИ

Совокупность различных сетей (подсетей, ЛВС), расположенных на значительных расстояниях друг от друга и объединенных в единую сеть с помощью телекоммуникационных средств, представляет собой территориально-распределенную сеть, которую можно рассматривать как совокупность различных сред передачи, коммуникационных протоколов и систем управления сетями. Примерами территориальнораспределенных сетей являются корпоративные сети организаций, объединяющие офисные сети, расположенные в разных городах, регионах и даже на разных континентах, городские, региональные, государственные сети и т.п.

Современные средства телекоммуникаций объединяют множество взаимосвязанных территориально-распределённых и локальных вычислительных сетей (представляющие собой подсети) различных организаций практически всего земного шара в единую сеть — глобальную вычислительную сеть Intemet.

Поскольку территориально-распределённые и глобальные сети используют одинаковые принципы, технологии и оборудование, то их принято называть единым термином - глобальные сети или Wide Агеа Network (WAN).

Для корректной работы глобальных сетей необходимо все сетевые стандарты связать так, чтобы они могли сосуществовать друг с другом, включая сети не на ЛВС-стандартах, такие как сети Х.25 или IBM SNA.

4.1 Принципы организации глобальных сетей

В отличие от ЛВС характерными особенностями глобальных сетей являются следующие.

1. Неограниченный территориальный охват.

2. Сеть объединяет ЭВМ самых разных классов (от персональных до суперЭВМ), локальные и территориальные сети разных технологий.

3. Для объединения различных сетей и передачи данных на большие расстояния используется специальное оборудование, а именно: аппаратура передачи данных (модемы, приемопередатчики и т.п.) и активное сетевое оборудование (маршрутизаторы, коммутаторы, шлюзы).

4. Топология глобальных сетей, в общем случае, произвольная.

5. Одной из важнейших задач, решаемой при построении глобальной сети, является организация эффективной маршрутизации передаваемых данных.

6. Глобальная сеть может содержать каналы связи разных типов: кабельные оптические и электрические, в том числе телефонные, беспроводные радио и спутниковые каналы, имеющие различные пропускные способности (от нескольких Кбит/с до сотен Гбит/с).

Глобальные сети обладают следующими достоинствами:

1. Предоставление пользователям сети неограниченного доступа к любым вычислительным и информационным ресурсам, а также множества специфических услуг, таких как электронная почта, голосовая связь, конференцсвязь, телевидение по запросу, доступ к разнообразным информационным ресурсам и т.д.

2. Возможность доступа к ресурсам сети практически из любой точки Земного шара.

3. Возможность передачи по сети любых видов данных, в том числе таких специфических как аудио и видео.

4.2 Технические средства объединения сетей

Классификация технических средств, используемых для объединения сетей, представлена на рис.109.

Рис. 109

Для объединения сетей используются:

• пассивные технические средства (объединение отдельных сегментов и расширения ЛВС):

- повторители (repeater);

- концентраторы (hub);

• активные технические средства (построение территориально-распределённых и глобальных сетей путём объединения как ЛВС, так и сетей других не ЛВС-технологий):

- мосты (bridge);

- маршрутизаторы (router);

- коммутаторы (switch);

- шлюзы (gateway).

Основная функция пассивных технических средств - усиление передаваемого сигнала. Они работают в основном на 1-м физическом уровне.

Активные технические средства управляют трафиком на основе адресов назначения передаваемых данных, то есть работают на 2-м и более высоких уровнях ОSI-модели.

4.2.1 Мосты

Мост - простейшее сетевое устройство, объединяющее локальные или удаленные сегменты и регулирующее прохождение кадров между ними. Подсоединенные к мосту сегменты образуют логически единую сеть, в которой любая станция может использовать сетевые ресурсы, как своего сегмента, так и всех доступных через мост сегментов (рис.110).

Мост работает на подуровне МАC второго - канального уровня и прозрачен для протоколов более высоких уровней, то есть принимает решение о передаче кадра из одного сегмента в другой на основании физического адреса (МАС-адреса) станции назначения. Для этого мост формирует таблицу адресов (ТА), которая содержит (рис.110:

Рис. 110

• список МАС-адресов (адресов назначения, АН) станций, подключенных к мосту;

• направление (порт), к которому станция подключена;

• "возраст" с момента последнего обновления этой записи.

Так как кадры, предназначенные для станции того же сегмента, не передаются через мост, трафик локализуется в пределах сегментов, что снижает нагрузку на сеть и повышает информационную безопасность. В отличие от повторителя, который, действуя на физическом уровне, всего лишь повторяет и восстанавливает сигналы, мост анализирует целостность кадров и фильтрует кадры, в том числе испорченные.

Мосты не нагружают работой остальные сетевые устройства — они находятся в одной большой сети с единым сетевым адресом и разными МАС-адресами.

Для получения информации о местоположении станций мосты изучают адреса станций, читая адреса всех проходящих через них кадров. При получении кадра мост сравнивает адрес назначения с адресами в ТА и, если такого адреса нет, то мост передает кадр по всем направлениям (кроме отправителя кадра). Такой процесс передачи называется "затоплением" (flooding). Если мост находит в ТА адрес назначения, то он сравнивает номер порта из ТА с номером порта, по которому пришёл кадр. Их совпадение означает, что адреса отправителя и получателя расположены в одном сегменте сети, следовательно, кадр не надо транслировать, и мост его игнорирует. Если же адреса отправителя и получателя расположены в разных сегментах, мост отправляет кадр в нужный сегмент сети.

Достоинствами мостов являются:

• относительная простота и дешевизна объединения ЛВС;

• "местные" (локальные) кадры остаются в данном сегменте и не загружают дополнительно другие сегменты;

• присутствие мостов прозрачно для пользователей;

• мосты автоматически адаптируются к изменениям конфигурации сети;

• мосты могут объединять сети, работающие с разными протоколами сетевого уровня;

• ЛВС, объединенные мостами, образуют логически единую сеть, т.е. все сегменты имеют один и тот же сетевой адрес; поэтому перемещение компьютера из одного сегмента в другой не требует изменения его сетевого адреса;

• мосты, благодаря простой архитектуре, являются недорогими устройствами.

Недостатки состоят в следующем:

• дополнительная задержка кадров в мостах;

• не используются альтернативные пути; из возможных путей всегда выбирается один, остальные - блокируются;

• могут способствовать значительным всплескам трафика в сети, например, при передаче кадра, адрес которого еще не содержится в таблице моста, он передаются во все сегменты;

• не могут предотвращать "широковещательные штормы";

• не имеют средств для изоляции ошибочно функционирующих сегментов.

Существуют мосты четырех основных типов (рис.111):

• прозрачные (transparent);

• транслирующие (translating);

• инкапсулирующие (encapsulating);

• с маршрутизацией от источника (source routing).

Прозрачные мосты (transparent bridges) предназначены для объединения сетей с идентичными протоколами на канальном и физическом уровнях, например, Ethernet-Ethernet, Token Ring-Token Ring.

Рис. 111

Прозрачный мост является самообучающимся устройством: в процессе работы для каждого подключенного сегмента автоматически строит таблицу адресов с адресами станций, находящихся в сегменте.

Алгоритм функционирования прозрачного моста следующий:

1) прием поступающего кадра в буфер моста;

2) анализ адреса отправителя (АО) и его поиск в таблице адресов (ТА);

3) если АО отсутствует в ТА, то этот адрес и номер порта, по которому поступил кадр, заносятся в ТА;

4) анализ адреса получателя (АП) и его поиск в ТА;

5) если АП найден в ТА, и он принадлежит тому же сегменту, что и АО (т.е. номер выходного порта совпадает с номером входного порта), кадр удаляется из буфера;

6) если АП найден в ТА, и он принадлежит другому сегменту, кадр передается в этот сегмент (на соответствующий порт);

7) если АП отсутствует в Т А, то кадр передается во все сегменты, кроме того сегмента, из которого он поступил.

Транслирующие мосты (translating bridges) предназначены для объединения сетей с разными протоколами на канальном и физическом уровнях, например, Ethernet и Token Ring (рис.112).

Транслирующие мосты объединяют сети путем манипулирования "конвертами": при передаче кадра из сети Ethernet в сеть TokenRing осуществляется замена заголовка (З ETh) и концевика (К Eth) Ethernet-кадра на заголовок (3 TR) и концевик (К TR) ТоkеnRing-кадра и наоборот. Поскольку в разных сетях используются кадры разной длины, а транслирующий мост не может разбивать кадры на части, то каждое сетевое устройство должно быть сконфигурировано для передачи кадров одинаковой длины.

Рис. 112

Инкапсулирующие мосты предназначены для объединения сетей с одинаковыми протоколами канального и физического уровня через высокоскоростную магистральную сеть с другими протоколами, например 10-мегабитные сети Ethernet, объединяемые сетью FDDI (рис.113).

В отличие от транслирующих мостов, которые преобразуют "конверты" одного типа в другой, инкапсулирующие мосты вкладывают полученные кадры вместе с заголовком и концевиком в другой "конверт" (см. рис.113), который используется в магистральной сети (отсюда термин "инкапсуляция") и передает его по этой магистрали другим мостам для доставки к узлу назначения. Конечный мост извлекает Еthеrnеt-кадр из FDDI-кадра и передаёт его в сегмент, в котором находится адресат. Длина поля данных FDDI-кадра достаточна для размещения Еthеrnеt-кадра максимальной длины.

Рис. 113

Мосты с маршрутизацией от источника (source routing bridges) функционируют на основе информации, формируемой станцией, посылающей кадр, и хранимой в конверте кадра. В этом случае мостам не требуется иметь базу данных с адресами.

Каждое сетевое устройство определяет путь к адресату через процесс, называемый "обнаружение маршрута " (route discovery).

Упрощенно принцип обнаружения маршрута можно проиллюстрировать на следующем примере (рис.114).

Рис. 114

Устройство-источник инициализирует обнаружение маршрута, посылая специальный кадр (рис.114.б), называемый "исследовательским " (ехрlоrеr). Исследовательские кадры используют специальный конверт, распознаваемый мостами с маршрутизацией от источника. При получении такого кадра каждый мост в специально отведенное в кадре место — поле записи о маршруте (routing infоrmаtiоn field), заносит следующие данные: номер входного порта, с которого был получен кадр, идентификатор моста (Mi) и номер выходного порта, например: 1, М1, З (см. рис.114,б). Далее мост передает этот кадр по всем направлениям, исключая то, по которому кадр был получен.

В итоге, станция назначения получает несколько исследовательских кадров, число которых определяется числом возможных маршрутов. Станция назначения выбирает один из маршрутов (самый быстрый, самый короткий или другой) и посылает ответ станции-источнику. В ответе содержится информация о маршруте, по которому должны посылаться все кадры. Станция-отправитель запоминает маршрут и использует его всегда для отправки кадров в станцию назначения. Эти кадры при отправке вкладываются в специальные конверты, понятные для мостов с маршрутизацией от источника. Мосты, получая эти конверты, находят соответствующую запись в списке маршрутов и передают кадр по нужному направлению.

Маршрутизация от источника используется мостами в сетях Token Ring для передачи кадров между разными кольцами.

4.2.2 Маршрутизаторы

Маршрутизаторы, как и мосты, позволяют эффективно объединять сети и увеличивать их размеры, но, в отличие от последних, работают на сетевом уровне ОSI-модели, то есть оперируют сетевыми адресами, и предоставляют более интеллектуальный сервис, заключающийся в определении наиболее подходящего пути и способа передачи пакетов.

В отличие от моста, работа которого прозрачна для сетевых устройств, работа маршрутизатора должна быть явно запрошена устройством. Для этого каждый порт (интерфейс) маршрутизатора имеет свой сетевой адрес: , , . . . (рис.115,а). На рис.115,б показана каноническая структура маршрутизатора.

Поступающие пакеты заносятся во входной буфер ВхБ. Центральный процессор ПМ маршрутизатора последовательно анализирует заголовки пакетов и в соответствии с выбранной стратегией маршрутизации и заданной таблицей маршрутизации ТМ определяет выходной канал связи КС, в выходной буфер (ВыхБ) которого должен быть направлен пакет.

Рис. 115

На рис.116 показан пример упрощённой маршрутной таблицы (МТ) узла (маршрутизатора) 4, находящегося в семиузловой сети.

В первом столбце указаны доступные (известные) этому маршрутизатору сетевые адреса назначения (АН). Для каждого АН во втором столбце указывается адрес шлюза (АШ) следующего маршрутизатора, к которому должны направляться пакеты, а в третьем - сетевой адрес выходного интерфейса (АВИ) данного маршрутизатора: . При наличии альтернативных путей для одного и того же АН может быть назначено несколько возможных путей передачи пакета. Так, например, пакеты с АН=3 могут быть направлены к маршрутизатору 2 или 6 через выходные интерфейсы  и  соответственно, что отображено в таблице в виде двух строк с одним адресом назначения. В этом случае выбор маршрута осуществляется на основе метрики (М), указанной в 4-м столбце.

Метрика может формироваться с учётом следующих факторов:

Рис. 116

• расстояние между источником и приемником пакета, которое обычно измеряется "счетчиками хопов" (hop — количество маршрутизаторов, пройденных пакетом от источника до приемника);

• пропускная способность канала связи;

• время доставки разными путями;

• загрузка канала связи и т.д.

В нашем примере в качестве метрики используется расстояние до адреса назначения, измеряемое в хопах.

В больших сетях для уменьшения размера таблицы маршрутизации и, соответственно, времени поиска маршрута, используется ограниченный набор адресов назначения, указанных в таблице явно. Для всех других адресов используется маршрут по умолчанию, которому в таблице соответствует строка (default), указывающая соседний маршрутизатор, используемый по умолчанию.

Весь спектр маршрутизаторов можно разбить на 3 группы (рис.117):

1) недорогие периферийные маршрутизаторы для соединения небольших удаленных филиалов с сетью центрального офиса;

2) маршрутизаторы удаленного доступа для сетей среднего размера;

3) мощные магистральные маршрутизаторы для базовых сетей крупных организаций.

Перuферuйные маршрутизаторы (Вoundагу Router) предназначены для объединения удаленных локальных сетей с центральной сетью и, как правило, имеют ограниченные возможности: один порт для соединения с локальной сетью и один для соединения с центральным маршрутизатором.

Рис. 117

Все сложные функции по маршрутизации возлагаются на центральный маршрутизатор, в связи с чем периферийный маршрутизатор не требует квалифицированного обслуживания на месте и характеризуется низкой стоимостью. Основная его функция состоит в принятии решения - пересылать поступивший через порт локальной сети пакет по единственному каналу распределенной сети или нет. Тем самым исключается необходимость построения маршрутной таблицы.

Маршрутизаторы удаленного доступа обычно имеют фиксированную (немодульную ) конструкцию с небольшим числом портов, например: один LAN-порт - для сопряжения с локальной сетью, от одного до нескольких WAN-портов - для связи с маршрутизатором сети центрального офиса и один резервный порт для коммутируемого соединения.

Маршрутизаторы удаленного доступа, в общем случае, обеспечивают:

• предоставление канала связи по требованию (dial-on-demand) - автоматическое установление коммутируемого соединения только во время передачи данных;

• сжатие данных, позволяющее примерно вдвое повысить пропускную способность канала связи;

• автоматическое nереключение трафика на коммутируемые

линии (полностью или частично) в случае выхода из строя выделенных

линий, а также при пиковых нагрузках.

Магистральные маршрутизаторы, в зависимости от архитектуры, делятся на маршрутизаторы:

• с централизованной архитектурой;

• с распределённой архитектурой.

Характерные особенности магистральных маршрутизаторов с распределенной архитектурой:

1) модульная конструкция:

• каждый модуль маршрутизатора снабжен собственным процессором, обрабатывающим локальный трафик, про ходящий через порты этого модуля;

• центральный процессор задействуется только для маршрутизации пакетов между разными модулями;

2) наличие до нескольких десятков портов для сопряжения с локальными и территориальными сетями разных типов: Ethernet, Token Ring, FDDI, X.25, Frame Relay, АТМ и т.д.;

3) поддержка средств обеспечения отказоустойчивости, необходимых для стратегически важных приложений:

• замена модулей в "горячем" режиме (без выключения питания);

• использование избыточных источников питания;

• автоматическая динамическая реконфигурация в случае отказов;

• распределенное управление.

В маршрутизаторах с централизованной архитектурой вся вычислительная мощность сосредоточена в одном модуле.

Основное преимущество магистральных маршрутизаторов с распределенной архитектурой по сравнению с централизованной — более высокие показатели производительности и отказоустойчивости.

Наиболее известными фирмами-поставщиками маршрутизаторов являются Cisco, 3Соm, Hewlett-Packard.


 

А также другие работы, которые могут Вас заинтересовать

82801. Проектирование водонапорной башни. Потребление кормов на ферме. Механизация удаления навоза. Доение коров 202.84 KB
  Цель работы. Получение работы получение навыков в расчетах водоснабжения животноводческих ферм. Произвести расчет на: расход на хозяйственно-питьевые нужды расход на производственные нужды (расход предприятиями промышленности, транспорта, энергетики, сельского хозяйства и т. д.), расход для пожаротушения.
82802. Учет поступления и выбытия материалов 81 KB
  Улучшению ресурсосбережения способствует упорядочение первичной документации, широкое внедрение типовых унифицированных форм учета, повышение уровня механизации и автоматизации учетно-вычислительных работ, обеспечение строгого порядка приемки, хранения и расходования сырья...
82804. Производство аммофоса 528.52 KB
  Целью данной курсовой работы является изучение производства аммофоса и решение поставленных задач, таких как: анализ существующих способов получения аммофоса, составление общей характеристики исходного сырья, также изучение физико-химических основ процесса, выбор и описание...
82805. Сетевые модели управления проектом 122.4 KB
  Планирование и управление комплексом работ по проекту представляет собой сложную и как правило противоречивую задачу. Методы сетевого планирования могут широко и успешно применяются для оптимизации планирования и управления сложными разветвленными комплексами работ которые требуют участия...
82806. Разработка фирменного знака компании «City Express» и эметов брендбука 13.45 MB
  Целью этой работы является создание логотипа компании «City Express» в качестве основы фирменного стиля. Для реализации данной цели были поставлены следующие задачи: Обзоры и анализ аналогов. Привести примеры фирменных знаков аналогичных компаний. Привести примеры фирменных знаков аналогичных компаний.
82807. Формирование мировых цен на нефть и нефтепродукты 371.23 KB
  Целью данной работы является анализ основных процессов, формирующих уровень и динамику мировых цен на сырую нефть. Исходя из поставленной цели, в работе были определены следующие задачи: определить основные характеристики мировой цены на рынке нефти; произвести анализ системы ценообразования на мировом рынке нефти...
82808. МОНАРХИЯ КАК ВИД ФОРМЫ ПРАВЛЕНИЯ 64.76 KB
  Целью настоящей работы является исследование понятий и признаков монархии как формы правления государства. Достижение поставленной в работе цели возможно путем решения следующих задач: проанализировать формы правления как составную часть формы любого государства; изучить признаки и виды монархии...
82809. Організація і планування галузі рослинництва та перспективи їх розвитку в РАБК «Ново-Некрасівський» 100.04 KB
  Як показують результати діяльності сільськогосподарських підприємств за останні роки, рівень ефективності сільськогосподарського виробництва в більшій їх частині залишається низьким і не забезпечує розширеного відтворення.