84838

Исследование функций. Возрастание и убывание функций

Лекция

Математика и математический анализ

Такие функции называют монотонными в интервале а b. Точка называется точкой максимума функции у = f x если cуществует такая окрестность точки что для всех из этой окрестности выполняется неравенство fx f. Точка называется точкой минимума функции у = f x если cуществует такая окрестность...

Русский

2015-03-22

65.09 KB

1 чел.

Лекция 8

Исследование функций

8.1. Возрастание и убывание функций

Функция называется неубывающей (возрастающей) в интервале (а, b), если для любых из этого интервала выполняется неравенство (). Если  (), то такая функция называется невозрастающей (убывающей) в (а, b). Такие функции называют монотонными в интервале (а, b).

Теорема. 1) Если функция f (x) имеет производную на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. f (x)  0.

2) Если функция  f (x)  непрерывна на отрезке   [a,b]  и дифференцируема в промежутке (а, b), причем  f(x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b].

Если функция  f(x)  убывает на отрезке [a, b], то f(x)  0 на этом отрезке. Если f(x) < 0 в промежутке (а, b),  то f(x)   убывает на отрезке [a,b] .

8.2. Максимум и минимум функций. Необходимые и   достаточные условия существования экстремума

Определение. Точка называется  точкой максимума функции  у =  f (x),    если  

cуществует такая окрестность точки ,  что для всех  из этой окрестности выполняется неравенство  f(x)  <  f().    

Определение. Точка называется  точкой минимума функции  у =  f( x),    если  

cуществует такая окрестность точки,  что для всех  из этой окрестности выполняется неравенство    f (x)  >  f ().     

Значение функции в точке максимума (минимума) называется   максимумом  

(минимумом) функции. Максимум  (минимумом) функции называется  экстремумом функции.

Теорема 1 (необходимое условие существования экстремума). Если дифференцируемая  функция у =   f(x)  имеет экстремум в точке, то ее производная  в этой точке равна  нулю:   f () = 0.

Обратное утверждение к этой теореме не верно.

Определение. Критическими точками функции называются точки, в которых производная функции не существует или равна нулю.

Теорема 2 (достаточные условия существования экстремума). Пусть функция  f (x) непрерывна в интервале (а, b),  который содержит критическую точку , и дифференцируема во всех точках этого интервала (кроме, может быть, самой точки ). Если при переходе через точку слева направо производная функции f (x) меняет знак с плюса  на минус, то в точке функция  f (x)  имеет максимум,  если же производная меняет знак с  минуса   на плюс, то функция имеет в этой точке минимум,  если же производная  знака  не меняет, то в точке   экстремума не существует.

Исследование функции на экстремум с помощью   производных высших порядков.

Теорема 3.    Пусть в точке   первая производная функции   f (x) равна нулю

(f () = 0), а вторая  производная  в точке  существует и отлична от нуля (), то при  в точке  функция  имеет максимум и минимум – при .

8.3. Выпуклость и вогнутость кривой.  Точки перегиба

Рассмотрим на плоскости кривую  , являющуюся графиком дифференцируемой функции .

Определение.  Мы говорим, что кривая обращена выпуклостью вверх на интервале (а, b), если все  точки кривой лежат ниже любой ее касательной на этом интервале.

Определение.  Мы говорим, что кривая обращена выпуклостью вниз на интервале (b, с), если все  точки кривой лежат выше  любой ее касательной на этом интервале.

Кривую, обращенную выпуклостью вверх, будем называть  выпуклой, а  обращенную выпуклостью вниз –  вогнутой.

                                                         у

    а   в  с      x

                                                                                                                                                                                                                                               

Рис.1

На рисунке 1 показана кривая, выпуклая на интервале (а, b) и вогнутая  на интервале (b, с).

Теорема 1.  Если во всех точках интервала (a, b) вторая производная функции f (x) отрицательна, т.е. ,  то кривая y = f (x) на этом интервале обращена выпуклостью вверх (кривая выпукла).

Теорема 1.  Если во всех точках интервала (b, с) вторая производная функции

f (x) положительна, т.е. ,  то кривая y = f (x) на этом интервале обращена выпуклостью вниз  (кривая вогнута).

Определение. Точка, отделяющая выпуклую часть кривой от вогнутой, называется точкой перегиба кривой.

Очевидно, что в точке перегиба касательная пересекает кривую.

Теорема 2. Пусть кривая определяется уравнением . Если  вторая производная f (a) = 0 или f (a) не существует и при переходе через точку х = а производная  f(x) меняет знак, то точка кривой с абсциссой х = а является точкой перегиба.

 

8.4. Асимптоты графика функции

Определение. Прямая l называется асимптотой кривой, если расстояние от переменной точки M кривой до этой прямой при удалении точки в бесконечность стремится к нулю.

Асимптоты  функции делятся на два вида:

  1.  вертикальные асимптоты, т.е. прямые, параллельные оси ; они имеют уравнения вида    х = а;
  2.  наклонные асимптоты, т.е. прямые, не параллельные оси ; они имеют уравнения вида y = kx + b.

Теорема о вертикальной асимптоте. Прямая х = а является вертикальной асимптотой функции только в том случае, когда , или .

Теорема о наклонной асимптоте.  Прямая является наклонной асимптотой графика функции  при   только в том случае, когда существуют (конечные) пределы

    и    .

8.5. Общая схема исследования функции и построения графика 

Исследование функции целесообразно проводить в следующем порядке.

1)  Найти область определения функции.

2)  Найти точки разрыва функции и асимптоты графика функции.

3)  Выяснить является ли функция четной, нечетной, периодической.

4)  Найти точки пересечения графика с осями координат.

5)  Найти интервалы монотонности функции и экстремумы функции.

6)  Найти интервал выпуклости и вогнутости функции, точки перегиба.

7)  Построить график функции.


 

А также другие работы, которые могут Вас заинтересовать

40053. СИСТЕМЫ ПРОГРАММИРОВАНИЯ 87.5 KB
  2 Что такое системы программирования их состав. Языки программирования. Машинноориентированные системы программирования.
40054. Лекции по информационным системам и технологиям 162.5 KB
  Понятие Автоматизированных Информационных Систем АИС и их классификация АИС совокупность информации экономикоматематических методов ЭММ и моделей технических программных технологических средств и специалистов предназначенную для обработки информации и принятия управленческих решений. По видам процессов управления различают следующие их виды: АИС управления технологическими процессами АИС организационного управления АИС управления организационнотехнологическими процессами АИС научных исследований АИС обучающие По сфере...
40055. Управление информационными ресурсами предприятия и источники данных 665 KB
  Управление информационными ресурсами предприятия и источники данных. Информационные хранилища данных. Загрузка данных в хранилище. Развитие систем управления базами данных.
40056. Обеспечение безопасности информационных ресурсов предприятия 365 KB
  Основы организации и обеспечения защиты информации. Защита информации на ПЭВМ. Защита информации в информационных сетях. Методы защиты информации в компьютерных системах.
40057. Интернет и его применение в деятельности предприятия 298 KB
  Уровни работы сети. Сеть priori предполагалась ненадежной: любая часть сети может исчезнуть в любой момент. Передача данных в сети была организована на основе протокола Internet IP. Протокол IP это правила и описание работы сети.
40058. Оценка экономической эффективности применения ИТ в деятельности предприятия 900 KB
  Оценка экономической эффективности CRMпроекта. Метод оценки эффективности применения CRM. Коэффициенты оценки эффективности применения CRM. Проблемы внедрения CRMсистем.
40059. Современные информационные технологии и системы в экономике 334 KB
  Современные информационные технологии и системы в экономике. Чем точнее и объективнее информация находящаяся в распоряжении системы управления чем полнее она отражает действительное состояние и взаимосвязи в объекте управления тем обоснованнее поставленные цели и реальные меры направленные на их достижение. Информационное обеспечение это часть системы управления которая представляет собой совокупность данных о фактическом и возможном состоянии элементов управления и внешних условий функционирования процесса а также о логике изменения и...
40060. Корпоративные информационные системы масштаба предприятия 986 KB
  Системы управления отношениями с клиентами CRM. Определение CRMсистемы. Функциональность и коммуникации CRM. Преимущества применения CRM.
40061. Специализированные информационные системы менеджмента и маркетинга 940 KB
  Маркетинговые базы данных. Понятие маркетинговых баз данных. Способы обновления маркетинговых баз данных. Маркетинговые базы данных.