84838

Исследование функций. Возрастание и убывание функций

Лекция

Математика и математический анализ

Такие функции называют монотонными в интервале а b. Точка называется точкой максимума функции у = f x если cуществует такая окрестность точки что для всех из этой окрестности выполняется неравенство fx f. Точка называется точкой минимума функции у = f x если cуществует такая окрестность...

Русский

2015-03-22

65.09 KB

1 чел.

Лекция 8

Исследование функций

8.1. Возрастание и убывание функций

Функция называется неубывающей (возрастающей) в интервале (а, b), если для любых из этого интервала выполняется неравенство (). Если  (), то такая функция называется невозрастающей (убывающей) в (а, b). Такие функции называют монотонными в интервале (а, b).

Теорема. 1) Если функция f (x) имеет производную на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. f (x)  0.

2) Если функция  f (x)  непрерывна на отрезке   [a,b]  и дифференцируема в промежутке (а, b), причем  f(x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b].

Если функция  f(x)  убывает на отрезке [a, b], то f(x)  0 на этом отрезке. Если f(x) < 0 в промежутке (а, b),  то f(x)   убывает на отрезке [a,b] .

8.2. Максимум и минимум функций. Необходимые и   достаточные условия существования экстремума

Определение. Точка называется  точкой максимума функции  у =  f (x),    если  

cуществует такая окрестность точки ,  что для всех  из этой окрестности выполняется неравенство  f(x)  <  f().    

Определение. Точка называется  точкой минимума функции  у =  f( x),    если  

cуществует такая окрестность точки,  что для всех  из этой окрестности выполняется неравенство    f (x)  >  f ().     

Значение функции в точке максимума (минимума) называется   максимумом  

(минимумом) функции. Максимум  (минимумом) функции называется  экстремумом функции.

Теорема 1 (необходимое условие существования экстремума). Если дифференцируемая  функция у =   f(x)  имеет экстремум в точке, то ее производная  в этой точке равна  нулю:   f () = 0.

Обратное утверждение к этой теореме не верно.

Определение. Критическими точками функции называются точки, в которых производная функции не существует или равна нулю.

Теорема 2 (достаточные условия существования экстремума). Пусть функция  f (x) непрерывна в интервале (а, b),  который содержит критическую точку , и дифференцируема во всех точках этого интервала (кроме, может быть, самой точки ). Если при переходе через точку слева направо производная функции f (x) меняет знак с плюса  на минус, то в точке функция  f (x)  имеет максимум,  если же производная меняет знак с  минуса   на плюс, то функция имеет в этой точке минимум,  если же производная  знака  не меняет, то в точке   экстремума не существует.

Исследование функции на экстремум с помощью   производных высших порядков.

Теорема 3.    Пусть в точке   первая производная функции   f (x) равна нулю

(f () = 0), а вторая  производная  в точке  существует и отлична от нуля (), то при  в точке  функция  имеет максимум и минимум – при .

8.3. Выпуклость и вогнутость кривой.  Точки перегиба

Рассмотрим на плоскости кривую  , являющуюся графиком дифференцируемой функции .

Определение.  Мы говорим, что кривая обращена выпуклостью вверх на интервале (а, b), если все  точки кривой лежат ниже любой ее касательной на этом интервале.

Определение.  Мы говорим, что кривая обращена выпуклостью вниз на интервале (b, с), если все  точки кривой лежат выше  любой ее касательной на этом интервале.

Кривую, обращенную выпуклостью вверх, будем называть  выпуклой, а  обращенную выпуклостью вниз –  вогнутой.

                                                         у

    а   в  с      x

                                                                                                                                                                                                                                               

Рис.1

На рисунке 1 показана кривая, выпуклая на интервале (а, b) и вогнутая  на интервале (b, с).

Теорема 1.  Если во всех точках интервала (a, b) вторая производная функции f (x) отрицательна, т.е. ,  то кривая y = f (x) на этом интервале обращена выпуклостью вверх (кривая выпукла).

Теорема 1.  Если во всех точках интервала (b, с) вторая производная функции

f (x) положительна, т.е. ,  то кривая y = f (x) на этом интервале обращена выпуклостью вниз  (кривая вогнута).

Определение. Точка, отделяющая выпуклую часть кривой от вогнутой, называется точкой перегиба кривой.

Очевидно, что в точке перегиба касательная пересекает кривую.

Теорема 2. Пусть кривая определяется уравнением . Если  вторая производная f (a) = 0 или f (a) не существует и при переходе через точку х = а производная  f(x) меняет знак, то точка кривой с абсциссой х = а является точкой перегиба.

 

8.4. Асимптоты графика функции

Определение. Прямая l называется асимптотой кривой, если расстояние от переменной точки M кривой до этой прямой при удалении точки в бесконечность стремится к нулю.

Асимптоты  функции делятся на два вида:

  1.  вертикальные асимптоты, т.е. прямые, параллельные оси ; они имеют уравнения вида    х = а;
  2.  наклонные асимптоты, т.е. прямые, не параллельные оси ; они имеют уравнения вида y = kx + b.

Теорема о вертикальной асимптоте. Прямая х = а является вертикальной асимптотой функции только в том случае, когда , или .

Теорема о наклонной асимптоте.  Прямая является наклонной асимптотой графика функции  при   только в том случае, когда существуют (конечные) пределы

    и    .

8.5. Общая схема исследования функции и построения графика 

Исследование функции целесообразно проводить в следующем порядке.

1)  Найти область определения функции.

2)  Найти точки разрыва функции и асимптоты графика функции.

3)  Выяснить является ли функция четной, нечетной, периодической.

4)  Найти точки пересечения графика с осями координат.

5)  Найти интервалы монотонности функции и экстремумы функции.

6)  Найти интервал выпуклости и вогнутости функции, точки перегиба.

7)  Построить график функции.


 

А также другие работы, которые могут Вас заинтересовать

44700. Особенности Экспорта 418.5 KB
  Экспорт Схемы в Графический Файл и Текстовый файл Профессиональный уровень Изготовителя Образца позволяет Вам экспортировать вашу диаграмму образца в следующие типы графических изображений: BMP JPEG TIFF RGB CMYK и 8 битов полутоновый GIF PCX WMF EMF и EPS 8 битов полутоновых растровых только. Информация вашей схемы может экспортироваться в Формат RTF RTF файл. Это откроет Мастер Экспорта схемы который будет вести Вас через процесс экспорта.
44701. Особенности Размещения Страницы 1.3 MB
  Эти возможности включают: Текстовое форматирование Форматирование параграфа Таблицы Разделы с выбираемыми номерами столбца и страницей устанавливают размеры форматируют Заголовки и Нижние колонтитулы Вставка объектов из других приложений Дополнительные специализированные возможности также обеспечены чтобы смешать особенности обработки текстов с возможностями дизайна РМ. Эти специализированные возможности включают: Таблицы мулине нитей содержание которых и форматирование могут быть...
44702. Графическая схема (Chart Graphic) 363 KB
  Таблица мулине нитей Этот раздел описывает как использовать таблицы мулине нитей в размещении. Вставка Таблицы Вышивального шелка ПотокаInserting Floss Thred Tble Чтобы вставлять Таблицу мулине направьте курсор в размещение где Вы хотите чтобы таблица была вставлена и затем выбирите Insert Edit Floss Tble в Меню разметки или нажать следующий значок инструментальной панели: . Удаление Таблицы мулине нитей Deleting Floss Thred Tble Чтобы удалять Таблицу мулине щелкните правой кнопкой мыши по таблице и затем выберите Delete...
44703. Диалоговое окно General Options 760 KB
  Следующие параметры настройки будут использоваться: Столбец: Центр Column: Center Данные: Право Dt: Right Выберите Sve чтобы использовать эти варианты как значение по умолчанию для новых таблиц. Настройки Customiztions Выберите включить ли черный контур outline вокруг образца цвета. Выберите Sve чтобы использовать эти варианты как значение по умолчанию для новых таблиц. Выберите Sve чтобы использовать эти варианты как значение по умолчанию для новых таблиц.
44704. Структурирование Документа 407.5 KB
  Если таблицы или разделы не используются то каждый элемент размещения будет направлен в страницу или страницы на отдельных строках используя единственный столбец. Для каждой страницы или группы страниц один или более Разделов могут быть созданы. Для каждого Раздела ориентация на бумаге размер страницы края страницы страница опций номерования и номер столбцов может быть выбрана.
44705. Особенности библиотеки (Library Features) 2.13 MB
  Создание Библиотеки Шрифта Creting Font Librry Особенность текста входящая в РМ использует сделанные образцы шрифта. Они специализированы в схемы библиотек куда каждый символ номер символ шрифта нарисованный в одной ячейке библиотеки. Название ячейки для каждой ячейки образца шрифта фактический символ шрифта который ячейка представляет. Рисуйте все символы числа символы для вашего шрифта.
44706. Панели инструментов Pattern Makera 853 KB
  Панель Min Главная 1 создать новый файл схемы 2 импорт графического файла в новый файл схемы 3 открыть файл схемы 4 сохранить текущий файл 5 печать 6 вырезать выделенный фрагмент в буфер обмена 7 копировать выделенный фрагмент в буфер обмена 8 вставить фрагмент из буфера обмена на текущую схему 9 отменить действие 10 вставить схему из галереи 11 вызвать справку Панель View Вид 1 отобразить схему в виде крестиков 2 отобразить схему в виде символов 3 отобразить схему в виде цветных квадратов 4 показать...
44707. Работа программы PM для вышивки крестом 2.61 MB
  Основные Особенности РМ позволяет Вам создавать схемы которые включают следующий стежок напечатает: Полный крест Полукрест Четверть Миниатюрный Назад Прямо бэкстич Специальный Французский Узел Цепочка ячеек До 240 цветов мулине вышивального шелка может использоваться при содействии дизайна. Эта особенность удобна когда Вы хотите использовать нарисованный эскиз как схему {руководство} для вашего дизайна. После создания дизайна РМ позволяет Вам создавать размещение страницы для...
44708. Преобразование сканированной Фотографии 3.65 MB
  Чтобы открыть Мастера Импортирования выберите Import Imge и затем Импортируйте В Новую схему из меню File или щелкните кнопкой панели Import Imge. Чтобы развернуть экран щелкните кнопкой Mximum которая расположена в верхнем правом угле главного окна Pttern Mker. Щелкните Browse чтобы выбрать файл. Щелкните Open после вашего выбора.