85522

Расчет устойчивости электрической системы

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

В данной курсовой работе для электрической системы проведены расчеты статической и динамической устойчивости. В частности были рассчитаны идеальные пределы мощности, коэффициенты запаса статической устойчивости в различных случаях регулирования возбуждения.

Русский

2015-03-27

675 KB

5 чел.

Министерство образования Российской Федерации

Южно-Уральский государственный университет

Кафедра ЭССиС

___________________________________________________________________

___________________________________________________________________

Пояснительная записка к курсовой работе

по курсу «Электромеханические переходные процессы»

………………………………………………00 ПЗ

       Нормоконтролер                                                    Руководитель

_____________________                                       Коровин Ю.В.

“___”___________2003 г.                                     “___”___________2003 г.

Автор работы

студент группы Э-403

Михайлов Д.В.

“___”___________2003 г.

Работа защищена

с оценкой

______________________

“___”___________2003 г.

Челябинск

2003


АННОТАЦИЯ

Михайлов Денис Викторович

Расчет устойчивости электрической системы – Челябинск, ЮурГУ, 2003, страниц –  27, рисунков – 17.

В данной курсовой работе для электрической системы проведены расчеты статической и динамической устойчивости. В частности были рассчитаны идеальные пределы мощности, коэффициенты запаса статической устойчивости в различных случаях регулирования возбуждения. Определены действительный предел мощности генераторов при включенном АРВ ПД и область допустимых значений коэффициента усиления АРВ ПД генераторов. Рассчитано как влияют активные сопротивления элементов и зарядная мощность ЛЭП на статическую устойчивость генераторов. Рассчитаны предельный угол и время отключения трехфазного короткого замыкания в начале одной из цепей ЛЭП.


СОДЕРЖАНИЕ

Задание к курсовой работе………………………………………………………. 4

Исходные данные………………………………………………………………… 5

1 Определение идеальных пределов мощности генераторов Г1 и коэф-

фициентов запаса статической устойчивости………………...……….…….  6

  1.  При отключенном АРВ…………………………………………..….... 8
    1.  При включенном АРВ ПД……………………………………….…… 9
    2.  При включенном АРВ СД……………………………………………. 10
    3.  Включено АРВ ПД и учтены активные сопротивления……………. 12
    4.  Включено АРВ ПД и учтена зарядная мощность ЛЭП…………….. 14

2 Определение идеального предела мощности генераторов Г1 при

включенном АРВ ПД…………………………………………………………. 16

3 Определение области допустимых значений коэффициента усиления

АРВ ПД 2.1 Выбор трансформатора………………………………………… 17

4 Расчет динамической устойчивости  системы………………………………. 18

4.1 Трехфазное короткое замыкание…………………………………….. 18

4.2 Двухфазное короткое замыкание на землю…………………………. 23


ЗАДАНИЕ К КУРСОВОЙ РАБОТЕ

1. Для электрической системы, схема которой приведена на рисунке 1, определить идеальные пределы мощности генераторов Г1 первой станции ЭС-1 и коэффициенты запаса статической устойчивости при передаче мощности от первой станции к точке потокораздела, приняв напряжение U0 в ней неизменным, для следующих случаев:

  1.  АРВ отключен;
    1.  Включено АРВ ПД;
    2.  Включено АРВ СД;

Расчет п.п. 1.1 ... 1.3 выполнить по упрощенной и точной методикам без учета активных сопротивлений элементов электрической системы и зарядной мощности линии электропередачи.

По результатам расчета по точной методике построить характеристики активной мощности генераторов Г1.

  1.  Включено АРВ ПД, учитывается активное сопротивление линии электропередачи и не учитывается ее зарядная мощность;
    1.  Включено АРВ ПД, не учитывается активное сопротивление линии электропередачи и учитывается ее зарядная мощность;

Расчет п.п. 1.4, 1.5 выполнить по точной методике.

2. Определить действительный предел мощности генераторов Г1 при включенном АРВ ПД, постоянстве сопротивления нагрузки без учета активных сопротивлений элементов электрической системы и зарядной мощности линий электропередачи.

3. Определить область допустимых значений коэффициента усиления АРВ ПД генераторов Г1 по критерию их статической устойчивости.

4. Выполнить расчет динамической устойчивости системы при трехфазном и двухфазном на землю коротких замыканиях в начале одной из цепей линии электропередачи (определить предельные времена отключения коротких замыканий) при постоянстве ЭДС генераторов Г1 и Г2 за их переходными сопротивлениям, без учета активных сопротивлений элементов электрической системы и зарядной мощности линий электропередачи.


ИСХОДНЫЕ ДАННЫЕ

РГ1 = 2200 МВт

 

Т1 = 7,4 с

РГ2 = 2000 МВт

 

Т2 = 8,0 с

ST1 = 2250 МВА

КТ1 = 13,8

              345

uК1% = 11

РН = 2500 МВт

о.е.

ST2 = 2500 МВА

КТ2 = 13,8

              345

uК2% = 11

Р0 = 365 МВт

l = 300 км

К0 = 3,2.

Напряжение в точке потокораздела U0 = 315 кВ.

Параметры линии электропередачи (одна цепь) r/ = 0,054 Ом/км; х/ = 0,328 Ом/км;

b/ = 3,4710-6 1/Омкм.

Рисунок 1 – Схема электрической системы


1 ОПРЕДЕЛЕНИЕ ИДЕАЛЬНЫХ ПРЕДЕЛОВ МОЩНОСТИ  ГЕНЕРАТОРОВ Г1 И КОЭФФИЦИЕНТОВ ЗАПАСА СТАТИЧЕСКОЙ УСТОЙЧИВОСТИ

Для электрической системы, схема которой приведена на рисунке 1, определим идеальные пределы мощности генераторов Г1 первой станции ЭС-1 и коэффициенты запаса статической устойчивости при передаче мощности от первой станции к точке потокораздела. Примем напряжение U0 в точке потокораздела  неизменным.

Расчет будем вести в относительных единицах. Для этого примем следующие базисные величины:

  •  базисное напряжение   UБ = UСР.СТ. = 340 кВ;
  •  базисная мощность       SБ = 1000 МВА.

Составим схему замещения электрической системы:

Рисунок 2 – Схема замещения электрической системы

Определим параметры схемы замещения.

Генераторы Г1:

;      (1)

;                (2)

;                    (3)

.       (4)

Генератор Г2:

;      (5)

;       (6)

;         (7)

.       (8)

Трансформатор Т1:

.       (9)

Трансформатор Т2:

.      (10)

ЛЭП:

;      (11)

;     (12)

(1/Ом);    (13)

;      (14)

;       (15)

.         (16)

Определим параметры режима работы системы.

Активная и реактивная составляющие мощности нагрузки:

;         (17)

.        (18)

Мощность, поступающая к нагрузке от генераторов Г1 станции ЭС-1:

;        (19)

.       (20)

Мощность, поступающая к нагрузке от генератора Г2 станции ЭС-2:

;       (21)

.       (22)

Сопротивление нагрузки:

;   (23)

Дальнейший расчет ведем в относительных единицах, поэтому символ * опускаем.

  1.  АРВ отключено

r = 0; QЗ = 0; U0 = const.

При отключенном АРВ синхронная ЭДС генераторов Г1 Е/q1 = const. Определим ее:

,           (24)

Здесь ,         (25)

где  хd = xdГ1 + хТ1 + хЛ = 3,825 + 0,22 + 0,426 = 4,471.

,

.

 0 = 38,070.

а) точная методика:

Определим идеальный предел мощности:

.       (26)

.

Определим коэффициент запаса статической устойчивости:

.    (27)

б) упрощенная и точная методики совпадают, т.к. АРВ отключено.

  1.   Включено АРВ ПД

r = 0; QЗ = 0; U0 = const.

При включенном АРВ ПД переходная ЭДС генераторов Г1 Е/1 = const. Определим ее:

,           (28)

Здесь ,         (29)

где  х/d = x/ dГ1 + хТ1 + хЛ = 0,616 + 0,22 + 0,426 = 1,262,

,

 

 / = 20,940.

а) точная методика:

Определим идеальный предел мощности:

,      (30)

где ,   (31)

 

Определим максимум полученной зависимости. Для этого найдем первую частную производную по углу и приравняем ее нулю:

 

Решая данное уравнение на ЭВМ получаем = 111,470. Подставим значение в полученную ранее зависимость. Получаем предел мощности:

.

Определим коэффициент запаса статической устойчивости:

.   (32)

б) упрощенная методика:

Определим идеальный предел мощности:

.        (33)

Определим погрешность расчета:

.     (34)

|| < 10% расчет можно проводить по упрощенной методике.

  1.  Включено АРВ СД

r = 0; QЗ = 0; U0 = const.

При включенном АРВ ПД напряжение генераторов Г1 UГ1 = const. Определим его:

,           (35)

Здесь ,         (36)

где  хС = хТ1 + хЛ = 0,22 + 0,426 = 0,646.

,

 

 С = 12,8220.

а) точная методика:

Определим идеальный предел мощности:

,     (37)

где .   (38)

 

Определим максимум полученной зависимости. Для этого найдем первую частную производную по углу и приравняем ее нулю:

 

Решая данное уравнение на ЭВМ получаем = 116,870. Подставим значение в полученную ранее зависимость. Получаем предел мощности:

.

Определим коэффициент запаса статической устойчивости:

.   (39)

б) упрощенная методика:

Определим идеальный предел мощности:

.        (40)

Определим погрешность расчета:

.     (41)

|| < 10% расчет можно проводить по упрощенной методике.

Погрешности отрицательны, что говорит о том, что при расчете по упрощенной методике мы получаем результат несколько меньше, чем есть на самом деле. Т.е. в реальности мы имеем некоторый запас устойчивости. Кроме того,     || < 10%. Все это позволяет сделать вывод, что использование упрощенной методики в расчете устойчивости вполне допустимо.

По результатам расчета п.п. 1.1 .. 1.3 построим характеристики активной мощности генераторов Г1 при различных типах АРВ.

Рисунок 3 – Зависимости Р()при различных типах АРВ.

  1.  Включено АРВ ПД

r 0; QЗ = 0; U0 = const.

При включенном АРВ ПД переходная ЭДС генераторов Г1 Е/1 = const. Определим ее по формуле (28). Для этого найдем :

,       (42)

 

Определим идеальный предел мощности:

,        (43)

где z11, z12 – собственные и взаимные сопротивления соответственно.

Рисунок 4 – Схема замещения

Здесь примем:  ,

         .

Определим собственные и взаимные сопротивления:

,          (44)

,          (45)

Т. к. , то:

,

α11 = 900 – 86,8250 = 3,1750.

.

Определим погрешность расчета:

.     (46)

Предел мощности получился несколько большим, чем при расчете без учета активных сопротивлений. То есть, не учитывая активные сопротивления, мы получаем некоторый запас устойчивости. Постольку, поскольку  || < 10%, то можно сделать вывод, что расчет без учета активных сопротивлений вполне допустим.

Определим коэффициент запаса статической устойчивости:

.   (47)

1.5 Включено АРВ ПД

r = 0; QЗ  0; U0 = const.

Рисунок 5 – Расчетная схема

Определим U1:

,           (48)

Здесь ,       (49)

где  – полная мощность в конце линии с учетом QЗ.

,(50)

,

.

Определим мощность в начале линии:

,         (51)

,    (52)

.

Определим переходную ЭДС генераторов Г1:

,           (53)

(54)

 

Определим идеальный предел мощности по формуле (43). Для этого преобразуем расчетную схему, проведя преобразование :

Рисунок 6 – Преобразование расчетной схемы

,           (55)

.      (56)

В данной схеме не учтены активные сопротивления, следовательно α11 = 0. Поэтому собственное сопротивление находить не будем, т.к. первое слагаемое выражения (43) все равно равен 0.

Определим взаимное сопротивление по формуле (45):

 j1,22.

.

Определим погрешность расчета:

.     (57)

Предел мощности получился значительно меньше, чем без учета зарядной мощности. Постольку, поскольку  || > 10%, то в практических расчетах необходимо учитывать зарядную мощность.

Определим коэффициент запаса статической устойчивости:

.    (58)

2 ОПРЕДЕЛЕНИЕ ДЕЙСТВИТЕЛЬНОГО ПРЕДЕЛА МОЩНОСТИ ГЕНЕРАТОРОВ Г1 ПРИ ВКЛЮЧЕННОМ АРВ ПД

r = 0; QЗ = 0; U0 = const, Е/1 = const.

Рисунок 7 – Расчетная схема

Переходную ЭДС генераторов Г1 берем из п.п. 1.2: Е/1 = 1,391.

Определим напряжение на выводах генератора Г2:

,           (59)

Здесь                

        (60)

.

Действительный предел мощности:

.        (61)

Определим собственные и взаимные сопротивления:

 

.       (62)

α11 = 900 – 89,780 = 0,220.

 

.       (63)

.

Определим погрешность расчета идеального предела мощности:

.    (64)

Определим коэффициент запаса статической устойчивости:

.    (65)

3 ОПРЕДЕЛЕНИЕ ОБЛАСТИ ДОПУСТИМЫХ ЗНАЧЕНИЙ КОЭФФИ-ЦИЕНТА УСИЛЕНИЯ АРВ ПД ГЕНЕРАТОРОВ Г1 ПО КРИТЕРИЮ ИХ СТАТИЧЕСКОЙ УСТОЙЧИВОСТИ

r = 0; QЗ = 0; U0 = const.

Коэффициент усиления должен лежать в промежутке:

 ku min < ku < ku max.

ku min принимается равным нулю.

ku max рассчитывается по формуле:

.          (66)

где С1, С2, С3, В1, В3 – значения частных производных в исходном режиме. Найдем их:

,    (67)

,(68)

(69)

,      (70)

,      (71)

,      (72)

.

0 < ku < 5,188.

При работе генераторов на холостом ходу ошибка при поддержании напряжения на выводах генератора в статическом режиме определяется по формуле:

.

Таким образом, видно, что АРВ ПД не справляется, поэтому нужно переходить к АРВ СД.

4 РАСЧЕТ ДИНАМИЧЕСКОЙ УСТОЙЧИВОСТИ СИСТЕМЫ

r = 0; QЗ = 0; U0 = const, Е/1 = const, Е/2 = const.

Короткое замыкание происходит в начале одной из цепей ЛЭП.

4.1 Трехфазное короткое замыкание

1) Рассмотрим исходный режим.

Составим схему замещения системы в исходном режиме.

Рисунок 8 – Схема замещения системы в исходном режиме

           ,   (73)

   ,     (74)

  .

Определим переходную ЭДС генератора Г2:

,           (75)

Здесь

        (76)

.

Из предыдущих расчетов (п.п. 1.2)

.

/12 = 20,940 – 17,30 = 3,640.

2) Рассмотрим аварийный режим.

Составим схему замещения системы в аварийном режиме.

Рисунок 9 – Схема замещения системы в аварийном режиме

.

Преобразуем расчетную схему, проведя преобразование 

Рисунок 10 – Преобразованная схема замещения системы в аварийном режиме

  ,     (77)

    ,    (78)

.    (79)

Найдем ускорение генераторов Г1 относительно генератора Г2:

,         (80)

где  f =50 – промышленная частота,

       ,     (81)

      ,     (82)

Т.к. при трехфазном КЗ связь с системой нарушается полностью, то .

Найдем собственные сопротивления по формуле (44):

,

 11 = 900 – 900 = 0.

,

 22 = 900 – 70,590 = 19,410.

,

.

 (с),    (83)

 (с).    (84)

Взаимное ускорение генераторов Г1 и генератора Г2:

 (гр/с2).

3) Рассмотрим послеаварийный режим.

Составим схему замещения системы в послеаварийном режиме.

Рисунок 11 – Схема замещения системы в послеаварийном режиме

,   (85)

,      (86)

.

Определим собственные сопротивления по формуле (44):

,

 11 = 900 – 88,820 = 1,180.

 

 22 = 900 – 58,440 = 31,560.

Определим взаимное сопротивление по формуле (45):

,

 12 = 900 – 108,030 = –18,030.

       ,  

      

                .

Взаимное ускорение генераторов Г1 и генератора Г2:

(гр/с2).

На рисунке 12 Построим графики зависимостей  и  :

Рисунок 12 – Графики зависимостей  и  

Найдем аналитически время отключения.

Предельный угол отключения найдем из условия равенства площадок ускорения и торможения (Fу = Fт):

,          (87)

,          (88)

Здесь ,         (89)

где  - предел мощности в послеаварийном режиме.

,                 (90)

  

,

Решая на ЭВМ тождество

получаем откл.пр = 81,660.

Определим время отключения:

 (с), (91)

4.2  Двухфазное короткое замыкание на землю

1) Рассмотрим исходный режим.

Исходный режим был рассчитан в п.п. 4.1 1):

.

        /12 = 20,940 – 17,30 = 3,640.

2) Рассмотрим аварийный режим

Определим собственные и взаимные сопротивления в аварийном режиме.

а) Сопротивление обратной последовательности

Составим схему замещения обратной последовательности

Рисунок 13 – Схема замещения обратной последовательности

.          (92)

б) Сопротивление нулевой последовательности

Составим схему замещения нулевой последовательности

Рисунок 14 – Схема замещения нулевой последовательности

 (93)

Определим добавочное сопротивление:

, (94)

Составим схему замещения системы в аварийном режиме.

Рисунок 15 – Схема замещения системы в аварийном режиме

Преобразуем расчетную схему, проведя преобразование  по формулам (77) (79).

Рисунок 16 – Преобразованная схема замещения системы в аварийном режиме

,

.

Найдем собственные и взаимные сопротивления по формулам (44) и (45):

11 = 900 – 89,820 = 0,180.

22 = 900 – 59,350 = 30,650.

12 = 900 – 106,950 = –16,950.

Определим предельные отключения по формулам (81) и (82):

       ,

      

                .

Определим взаимное ускорение генераторов Г1 и генератора Г2 по формуле (80):

(гр/с2).

3) Рассмотрим послеаварийный режим.

Послеаварийный режим был рассчитан в п.п. 4.1 3):

(гр/с2).

На рисунке 17 Построим графики зависимостей  и  :

Рисунок 17 – Графики зависимостей  и  

Определим предельный угол отключения. Для этого сначала определим на ЭВМ критический угол.

δкр= 143,65º,

.

Проинтегрировав, получим:

δотк пр= 116,82º.

Углы ускорения и торможения соответственно равны:

δуск= 58,3º, δторм= 99,05º,

Вычислим площади площадок ускорения и торможения:

Определим предельное время отключения методом последовательных интервалов:

,

,  .

Интервал 1:

;

;

.

Интервал 2:

;

;

.

Интервал 3:

;

;

.

Интервал 4:

;

;

.

Интервал 5:

;

;

.

Интервал 6:

;

;

.

На рисунке 18 изобразим полученную зависимость.

Рисунок 18 – Зависимость времени отключения от угла .

Из графика видно, что при  =>  , то есть время отключения двухфазного на землю к.з много больше времени отключения 3х фазного к.з. Это связано с тем, что при 1,1ф. замыкании связь с системой еще остается и по здоровой фазе генератор вырабатывает мощность, которая пропорциональна тормозящему электромагнитному моменту.


Список литературы

  1.  Справочник по проектированию электроэнергетических систем / В.В. Ершевич, А.Н. Зейлигер, Г.А. Илларионов и др.; Под ред. С.С. Рокотяна и И.М. Шапиро.–3-е изд., перераб. и доп.–М.: Энергоатомиздат, 1985.–352 с.

  1.  Неклепаев Б. Н., Крючков И. П. Электрическая часть электростанций и подстанций: Справочные материалы для курсового и дипломного проектирования: Учеб. Пособие для вузов. – 4-е изд., перераб. и доп. –М.: Энергоатомиздат, 1989.– 608 с.: ил.

  1.  Рожкова Л.Д., Козулин В.С. Электрооборудование станций и подстанций: Учебник для техникумов. – 3-е изд., перераб. и доп.–М.: Энергоатомиздат, 1987. – 648 с.: ил.

  1.  Веников В.А. Переходные электромеханические процессы в электрических системах. – М:. Высшая школа, 1978.   

  1.  Стандарт предприятия. Курсовое и дипломное проектирование. Общие требования к оформлению СТП ЮУрГУ 04-2001/Составители: Сырейщикова Н. В., Гузеев В. И. Сурков И. В., Винокурова Л. В., – Челябинск: ЮУрГУ, 2001. – 49 с.


 

А также другие работы, которые могут Вас заинтересовать

64628. Этика деловых отношений в организации ООО «Аэросервис» 88.56 KB
  Целью данной работы является изучение этики деловых отношений в организации ООО Аэросервис. Для написания данной работы необходимо решить следующие задачи: всесторонне рассмотреть теоретические аспекты этики деловых отношений...
64629. Проектирование и строительство архитектурного ансамбля 40.87 KB
  Икона Казанской Божией Матери, покровительницы государства Российского и дома Романовых, была привезена в Санкт-Петербург Петром І в 1710 году для освящения новой столицы Российской империи. Первоначально икону помещают в церковь Рождества Богородицы на Петроградской стороне.
64632. Югославия в годы Второй мировой войны 55.57 KB
  Верхний хронологический рубеж характеризуется тем что в мае 1945 году в Югославии победу над фашистскими захватчиками одержал Отечественный фронт. Предметом исследования выступают общественные и политические отношения в Югославии складывающиеся в годы Второй мировой войны.
64633. Методы повышения эффективности использования лесозаготовительных машин 156.15 KB
  При диагностировании механизмов трансмиссии прежде всего учитывают информацию водителя о работе ее агрегатов выбеге автомобиля самопроизвольном выключении передач или трудностях их включения шумах и перегревах наблюдаемых в процессе работы автомобиля на линии.
64636. Особенности принятия управленческих решений в торговой организации ООО «Спортмастер» 109.36 KB
  Глобальная цель управления являющаяся основой любого решения заключается в максимальном удовлетворении потребностей и интересов человека коллектива общества. Принятие управленческого решения это выбор того как и что планировать организовывать мотивировать и контролировать.